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ABSTRACT 

A wireless wearable battery-operated pulse oximeter has been developed in our 

laboratory for field triage applications. The wearable pulse oximeter, which uses a 

forehead-mounted sensor to provide arterial oxygen saturation (SpO2) and heart rate (HR) 

information, would enable field medics to monitor vital physiological information 

following critical injuries, thereby helping to prioritize life saving medical interventions. 

This study was undertaken to investigate if accelerometry (ACC)-based adaptive noise 

cancellation (ANC) is effective in minimizing SpO2 and HR errors induced during 

jogging to simulate certain motion artifacts expected to occur in the field. Preliminary 

tests confirmed that processing the motion corrupted photoplethysmographic (PPG) 

signals by simple Least-Mean-Square (LMS) and Recursive Least-Squares (RLS) ANC 

algorithms can help to improve the signal-to-noise ratio of motion-corrupted PPG signals, 

thereby reducing SpO2 and HR errors during jogging. The study showed also that the 

degree of improvement depends on filter order. In addition, we found that it would be 

more feasible to implement an LMS adaptive filter within an embedded microcontroller 

environment since the LMS algorithm requires significantly less operations. 
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1. INTRODUCTION 

 

Obtaining vital signs in real time from wearable physiological monitoring devices 

would enable medical personnel and first responders to assess quickly and effectively the 

health status of soldiers, hazmat workers, firefighters, and mountain climbers and manage 

patient triage from a remote location. During battlefield missions, specifically the 

Vietnam conflict, Zajtchuk and Sullivan described that although 67% of casualties 

occurred within 10 minutes from the onset of injury, the remaining 33% could have 

benefited from advanced diagnostic devices [1]. The implementation of wearable sensors 

could provide a medic with vital physiological information from several combatants. 

To address the need for remote monitoring technology, considerable work has been 

described in the field in recent years regarding monitoring devices that could be utilized 

to indicate the health status of individuals [2-11]. Much of the effort to develop wearable 

diagnostics for remote physiological assessment has involved pulse oximeters since these 

devices have the potential to provide real-time arterial oxygen saturation (SpO2), heart 

rate (HR), heart rate variability (HRV) and respiration rate (RR) readings [12]. Pulse 

oximeters being developed for use in the field must be resistant to the effects of motion 

artifacts which are known to degrade considerably the accuracy of SpO2 and HR readings 

since signal components affected by motion can appear as normal arterial pulsations [13]. 

Implementation of software algorithms has been suggested in the literature as a means of 

reducing the effects of motion on wearable pulse oximeters. For example, Wendelken et 

al have suggested software routines for incorporation into a wearable system based on a 

forehead-mounted pulse oximeter sensor [6, 7]. Likewise, Asada et al have suggested 

implementing algorithms within a wearable device based on a custom ring-worn sensor 
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[8, 9]. 

McGrath and coworkers developed a system known as ARTEMIS (Automated 

Remote Triage and Emergency Management Information System) which was designed to 

provide a means of indicating the status of military combatants during battlefield 

missions (Fig. 1.1) [14]. This system incorporates a commercial forehead-worn pulse 

oximeter sensor (Nonin
®
) with a custom “fuzzy logic” based decision-making algorithm 

that is utilized to interpret data from the wearable sensor.  

 
Figure 1.1. ARTEMIS graphical user interface [14]. 

 

Wendelken et al have suggested that the ARTEMIS system could be utilized to 

provide medics with an indication of the level of severity of an injury. An algorithm 

could be implemented in software to interpret data acquired by a PPG sensor and help 

medics to evaluate physiological parameters such as blood circulation and breathing rate. 

The unique feature of the ARTEMIS algorithm is the incorporation of a medical model in 

order to determine the health status of monitored individuals [15]. By incorporating 

physiological readings acquired from a wearable pulse oximeter, input from the 

monitored individual and input from a medic, the model utilized in ARTEMIS could 

potentially classify the severity of injuries in the field. This could increase the speed of 
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treatment and triage of injured combatants. 

Despite the potential utility of ARTEMIS, experiments have been limited to 

laboratory simulations while field implementation of the device has not been reported. 

Additionally, since only simulations were performed, the software associated with 

ARTEMIS may not be effective during periods of motion which is a crucial design 

constraint for real-time monitoring of mobile individuals. Without the utilization of 

robust software algorithms to reduce the effects of motion artifacts, the readings extracted 

from PPG signals remain unreliable. Therefore, motion tolerant algorithms are a crucial 

component to a system used for remote physiological assessment and triage of mobile 

individuals. 

Asada et al developed a wearable ring-type sensor for continuous monitoring 

applications [8]. This device (Fig. 1.2) was designed to be low power, unobtrusive and 

resistant to the effects of motion artifacts [8, 9]. It was suggested that an outer ring could 

be utilized to protect an inner ring from physical disturbances. This could reduce motion-

induced noise in the PPG signal since the sensing component of the pulse oximeter was 

embedded within the inner ring [8]. By reducing the effect of physical disturbances, this 

design could help to reduce the effects of motion artifacts. In addition to this novel dual-

ring design, it was also suggested that accelerometer (ACC)-based adaptive noise 

cancellation (ANC) software could be incorporated into the ring-sensor to obtain 

potentially more accurate measurements during jogging [16]. Briefly, this software 

acquires signals from an ACC attached to the ring sensor and uses these signals as a 

motion reference for the ANC algorithm. Asada et al have suggested that the ACC 

signals could be used to reduce the effects of motion artifacts in photoplethysmographic 
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(PPG) signals acquired during jogging [16]. Although these features suggest that the 

device could become a promising platform for continuous monitoring applications, the 

ability of the ring sensor to provide reliable readings is limited since the fingers are 

known to be especially prone to motion artifacts [12]. In addition, it was described by 

Nagre et al [17] that the forehead is a more stable location from which to acquire PPG 

data. Therefore, measurements obtained from the forehead would be preferred.  

It should be noted that although jogging is not the primary activity of military 

combatants in the field, studies that consist of jogging exercises are worth pursuing since 

this can help to address the types of motion artifacts that occur in the field. For example, 

it is known that PPG signals can become corrupted by motion artifacts even in a clinical 

setting, where body movements are generally less intense. Therefore, to determine the 

feasibility of reducing the effects of motion in a field setting, more intense motions, such 

as jogging, should be investigated. 

 
Figure 1.2. The wearable ring-sensor developed by Asada et al [18]. 

 

Inadequacies of previously designed pulse oximeter-based systems suggest that a 

novel wearable system with resistance to the effects of motion artifacts would provide a 

more suitable platform for telemedicine applications, which are base on the use of 

communication technologies for more rapid and efficient transfer of medical information 

[19]. Potential arenas in which a wireless wearable pulse oximeter could be utilized 

Antenna 

Battery 

CPU 

Photo Diode 

LEDs 
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include military settings, firefighters, mountain climbers as well as home-based care. 

Features of a wearable system for remote physiological monitoring would include small-

size, light-weight, power efficiency, and capability of providing reliable readings even 

during periods of movement. Thus, the focus of this thesis is to address the feasibility of 

reducing the effects of motion artifacts in wearable pulse oximetry. 

The next section describes the significance of wearable pulse oximetry for telemetry 

applications. Since commercially available pulse oximeters are not designed for use in 

the field, a more robust pulse oximeter must be devised in order to obtain reliable 

readings from moving individuals. A more motion-tolerant pulse oximeter would enable 

medics to obtain more accurate measurements in the field even during patient motion. 
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2. SIGNIFICANCE 

 

A wearable remote physiological monitoring device could help to save lives by 

providing continuous readings to medical personnel. Individuals that would benefit from 

this technology include persons operating in high-risk environments, such as military 

combatants, firefighters, and other first responders, as well as individuals in need of 

continuous at-home monitoring. 

In a battlefield setting, this would enable medics to assess the health status of 

combatants more quickly, which would help to expedite the delivery of medical treatment 

and triage of injured individuals. Faster treatment and triage in the field could help 

medics save the lives of injured individuals as well as reduce the amount time that the life 

of the medic is in danger. Additionally, simultaneous observation of several individuals 

could enable more efficient utilization of medical professionals so that treatment is 

delivered where it is most urgently needed. 

Commercial-off-the-shelf (COTS) technology is not adequate for use during field 

applications since these devices are typically designed for use in a clinical setting. Intense 

movements in the field would reduce the accuracy of measurements obtained from a 

commercial pulse oximeter and, therefore, limit its effectiveness for remote monitoring 

and triage applications. 

Advances in remote monitoring could provide medical personnel with a more direct 

link to injured persons [1]. Obtaining more accurate and reliable physiological readings 

remotely would enable medics to diagnose multiple injured individuals with a high 

degree of confidence. This would significantly expedite the delivery of treatment which 

could greatly reduce the amount of casualties that occur in military combat. 
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Pulse oximetry represents a promising platform for remote physiological monitoring 

since SpO2, HR, HRV, and RR readings can be extracted in real-time from the PPG 

signal, which can be obtained by a wearable pulse oximeter sensor. These measurements 

would enable a medic to make more accurate diagnoses for medical treatment and triage 

of injured combatants. These physiological parameters would also be useful for at-home 

and clinical monitoring applications. 

Although pulse oximeters can provide several physiological measurements, the 

accuracy and reliability of existing pulse oximeters is inadequate for field applications 

since PPG signals degrade as a result of patient motion. Improving the reliability of 

readings obtained by pulse oximeters during motion would significantly expand the 

utility of wearable monitoring for telemedicine applications. 
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3. PULSE OXIMETRY BACKGROUND 

 

3.1. LIGHT ABSORPTION 

 

Oximetry is a noninvasive, optically-based technique that utilizes light absorption 

properties of blood constituents to measure the concentration of oxygen in arterial blood 

[13]. The amount of light absorbed in a given substance is defined by the Lambert-Beer 

Law which associates the degree of light absorption with the wavelength of the incident 

light, the optical path length and the absorption coefficient of the substance [20]. By 

illuminating a tissue bed with light emitting diodes (LED) and measuring the amount of 

light absorbed by the tissue using a light-sensitive photodiode (PD), it is possible to 

estimate the concentration of oxygen in the arterial blood. 

A pulse oximeter utilizes LEDs that emit red (R) (e.g. 660nm) and infrared (IR) light 

(e.g. 940nm) since these wavelengths are absorbed by oxygenated (HbO2) and reduced 

hemoglobin (Hb) to different degrees. Fig. 3.1 shows that Hb absorbs R light to a greater 

extent than IR light, although HbO2 more readily absorbs IR light. Therefore, by 

measuring the relative amounts of R and IR light absorptions, which indicate the 

proportion of HbO2 and Hb components, the concentration of oxygenated arterial blood 

can be measured [20]. 
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Figure 3.1. Optical absorption spectra of HbO2 and Hb [13]. 

 

Light illuminated a region of tissue is absorbed by skin, blood, tissue and bone, as 

illustrated in Fig. 3.2. The remaining light that is not absorbed is incident upon a light-

sensitive PD. The AC portion of the PPG signal is due to pulsatile arterial blood which 

causes variations in light intensity; the DC portion is due to non-pulsatile arterial blood, 

venous blood, skin, tissue and bone. 
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Figure 3.2. Optical absorption as a function of blood, skin pigment, tissue and bone [13]. 

 

The pulsatile portion of the PPG signal is caused by changes in the arterial blood 

volume during the cardiac cycle, associated with the contraction (systole) and relaxation 
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(diastole) phases. The contraction of the heart drives oxygenated arterial blood 

throughout the systemic arteries, which partially attenuate the illuminating R and IR light 

incident upon the PD. As blood returns to the heart via the venous system during diastole, 

the arterial blood volume decreases which allows more light to illuminate the PD. 

Consequently the cardiac cycle produces the sinusoidal-shaped PPG signal shown in Fig. 

3.3. 
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Figure 3.3. Typical resting PPG signal. 

 

3.2. Operating Modes 

 

PPG signals can be obtained utilizing either transmittance or reflectance mode optical 

transducers. Transmittance mode sensors, which are commonly worn on the fingers, 

measure light that passes through tissue by a PD located on the opposite side of a tissue 

bed, as depicted in Fig. 3.4. The reflectance operating mode, also illustrated in Fig. 3.4, 

measures the reflected, or back-scattered, light by a PD positioned adjacent to the R and 

IR LEDs. A pulse oximeter that employs a reflectance mode sensor is typically forehead-

mounted but other body sites can be used to derive similar information. 
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Figure 3.4. Transmittance (left) and reflectance (right) operating modes in pulse 

oximetry. 

 

3.3. Measurement Sites 

 

In a clinical environment, PPG signals are typically obtained from the fingers, 

although PPG signals obtained by forehead-worn sensors have been shown to provide 

accurate and reliable measurements. 

For field applications, such as physiological monitoring of military combatants and 

firefighters, it would be more practical to implement a forehead-worn sensor than a 

finger-worn sensor since utilizing the forehead as a measurement site does not limit hand 

movement. Furthermore, PPG signals obtained from the forehead are generally less 

sensitive to motion artifacts than PPG signals measured from the fingers [17, 21], and 

SpO2 readings obtained from the forehead respond faster to physiological changes due to 

the proximity of the head to the heart. 

Vital physiological information is contained within the amplitude and spectral content 

of PPG signals which can be processed to extract SpO2, HR, HRV and RR [12]. This 

thesis focuses on software algorithms to extract more accurate and reliable SpO2 and HR 

measurements during activity. 
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3.4. SpO2 MEASUREMENT THEORY 

 

The noninvasive measurement of arterial oxygen saturation (SaO2) by pulse oximetry 

(SpO2) is a crucial reading for physiological monitoring since a lack of oxygen to the 

brain for a prolonged period of time can be fatal. For a healthy individual breathing 

atmospheric air, readings typically range from 96% to 98%. Commercial pulse oximeters 

typically report a measurement accuracy of ± 2% during rest [13]. Additionally, it was 

reported that the Masimo SET™ provides ± 3 digits during light motion artifacts 

associated with the clinical setting [22]. 

SpO2 is derived from the relative concentrations of HbO2 and Hb in arterial blood. It 

can be determined from the ratio of R to IR light absorbed in a tissue bed. The ratio of 

normalized R light (ACR/DCR) to normalized IR light (ACIR/ACIR) known as the ratio-of-

ratios, or R value (3.1), is utilized in (3.2) to calculate SpO2, where A and B are constants 

derived during empirical calibration of a pulse oximeter. A typical calibration curve is 

shown in Fig. 3.5. 

IR

IR

R

R

DC
AC

DC
AC

=R     (3.1) 

SpO2 = A – B · R    (3.2) 
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Figure 3.5. Typical SaO2 calibration curve [13]. 

 

Time and frequency domain algorithms can be used to obtain noninvasive SpO2 

readings from PPG signals. Scharf et al have suggested that an algorithm based on 

spectral analysis can be implemented by making use of the Fast Fourier Transform (FFT) 

for the measurement of SpO2 with clinically acceptable accuracy [23-25]. In a study that 

involved the design of a number of SpO2 extraction algorithms for resting conditions, it 

was demonstrated that a time-domain algorithm based on differential changes in PPG 

signals provided accurate SpO2 measurements, although spectral analysis produced 

similar results [12]. 

 

3.5. HR MEASUREMENT THEORY 

 

Pulse oximeters provide HR readings since this measurement can help to determine 

physiological status. HR readings fluctuate with the physiological and psychological 

states and can indicate changes in the sympathetic nervous system [14]. Additionally, 
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heart rate variability (HRV) readings can be derived from HR measurements to help to 

assess the overall level of health [26]. 

The pulsatile (AC) component of the PPG is a function of the contraction (systolic) 

and relaxation (diastolic) phases of the cardiac cycle [13]. The upstroke of a PPG 

waveform tends to have a noticeably sharp rising slope which facilitates peak detection. 

The time between consecutive peaks is used to extract an average HR reading [13]. 

Another method to determine HR consists of applying spectral analysis and measuring 

the frequency corresponding to the most prominent spectral peak [23, 24], although a 

slope-detection routine, as demonstrated by Johnston, has been shown to provide the 

most accurate HR readings during resting conditions [12]. 

 

3.6. CUSTOM PULSE OXIMETER PLATFORM 

 

A wireless wearable pulse oximeter platform was developed in our laboratory for 

remote physiological assessment and triage applications [26]. This thesis investigates the 

feasibility of increasing measurement reliability of the custom pulse oximeter. The 

custom platform fulfills essential design criteria for continuous real-time monitoring in 

field applications, including small-size, light-weight, unobtrusiveness, and low-power 

consumption. 

The prototype wearable system is comprised of three units: A battery-operated optical 

Sensor Module (SM) mounted on the forehead, a belt-mounted Receiver Module (RM) 

mounted on the subject’s waist, and a Personal Digital Assistant (PDA) carried by a 

remote observer. R and IR PPG signals acquired by the small (φ = 22mm) and 

lightweight (13g) SM are transmitted wirelessly via an RF link to the RM. The data 
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processed by the RM can be transmitted wirelessly over a short range to the PDA or a 

PC, giving the observer the capability to monitor multiple subjects simultaneously. The 

system, illustrated in Fig. 3.6, can be programmed to alert on alarm conditions, such as 

sudden trauma, or when physiological values are out of their normal range. Dedicated 

software is used to filter the reflected PPG signals and compute SpO2 and HR based on 

the relative amplitude and frequency content of the signals. A triaxial MEMS ACC is 

incorporated to detect changes in body activity. In addition, the information obtained 

through the tilt sensing property of the ACC is used to determine body posture. Posture 

and acceleration measurements, combined with physiological information, can be useful 

to assess the status of (injured) persons/individuals in the field. 

 
Figure 3.6. Customized wearable reflectance pulse oximeter. 

 

3.7. LIMITATIONS TO PULSE OXIMETRY 

 

A significant step in implementing a pulse oximeter for remote physiological 

monitoring is minimizing signal corruption due to movement induced artifacts, which 

cause a significant reduction in the SNR of the PPG signals. Motion artifacts can arise 

from perturbing motions during tidal breathing and shivering to more pronounced 

disturbances such as running [28-31]. Additionally, it has been suggested in the literature 

SM RM 
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that motion artifacts may arise from changes in arterial blood volume rather than 

decoupling between the PPG sensor and vascular tissues [32]. Similarly, some 

investigators suggested that the effects of motion artifacts arise from changes in venous 

blood volume [33]. 

Preliminary studies showed that the frequency of the PPG signal acquired from a 

forehead-worn reflectance transducer during indoor jogging consists of significant energy 

corresponding to the spectrum of the stepping frequency. For example, the frequency 

spectra of a PPG signal acquired while resting and running were derived using the FFT 

and are illustrated in Fig. 3.7A and 3.7B, respectively. These spectra suggest that the 

frequency of the PPG signal obtained during jogging is composed of the motion-induced 

noise, which decreases the SNR of the PPG and in turn the accuracy of SpO2 and HR 

readings. The body acceleration data, depicted in Fig. 3.7C, was acquired during jogging 

trials in order to verify that the frequency of motion corresponds with the noise frequency 

present in the FFT of the PPG signal. 

The frequency spectra of the body acceleration and PPG signals depicted in Fig. 3.7 

provide evidence that during jogging, the underlying cardiac frequency spectrum is 

contained in the PPG signal although the motion frequency spectrum is more prominent. 

This demonstrates that the effects of motion artifacts significantly affect the SNR of the 

PPG signal. 
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Figure 3.7. (A) Frequency spectra of resting PPG signal, (B) PPG signal during indoor 

jogging, (C) and tri-axial ACC signals during indoor jogging. 
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4. THE EFFECTS OF MOTION ARTIFACTS 

 

Preliminary experiments were conducted to determine the effects of motion artifacts 

on SpO2 and HR measurements during jogging. To extract measurements from PPG 

signals acquired during jogging the data were processed by algorithms developed by 

Johnston offline in Matlab™ [12]. Additional preliminary experiments were conducted to 

determine the effects of changes in physiology on measurement accuracy. To collect 

readings during exercises without significant head movements, experiments were 

performed using a stationary bicycle. 

 

4.1. ACCURACY OF SpO2 MEASUREMENTS DURING JOGGING 

 

As described in the Background Section, SpO2 measurements were obtained by 

estimating the relative concentration of HbO2 to total arterial hemoglobin. The SpO2 

Differential algorithm developed by Johnston utilized signal derivatives to measure 

relative amplitudes of ACR and ACIR signals [12]. It was shown that accurate readings 

were measured by using this algorithm to process PPGs acquired during rest as well as 

during hypoxic events [20, 34]. 

The SpO2 Differential algorithm calculated SpO2 by using ACR and ACIR derivatives 

and raw DCR, and DCIR signal values. AC and DC signals were obtained by filters in 

software. AC derivatives that were equal to 0 were removed from the calculation of SpO2 

since these represented signal values are associated with motion artifacts [12]. To smooth 

the data, measurements were averaged by a moving average window. 

Although the SpO2 Differential algorithm could be used to record accurate 

measurements during rest, we found that the measurement accuracy diminished 
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significantly during activity due to reduced SNR of the PPG signals [35, 36]. Signal 

conditioning included low-pass (LP) and band-pass (BP) filtering to isolate the cardiac 

spectral band although advanced processing was limited. Generally, the SpO2 extraction 

software was designed for resting conditions, so the algorithm did not incorporate 

sophisticated features to process motion-corrupted PPG signals. 

Fig. 4.1 shows typical SpO2 readings obtained by the algorithm devised by Johnston  

[12] and the Masimo pulse oximeter during periods of rest and jogging. It is clear that for 

resting conditions, there is less than a 2% mean difference between the SpO2 readings 

obtained from the custom device and the Masimo reference measurements. During 

jogging, the readings obtained from the SpO2 Differential algorithm developed by 

Johnston [12] deviated from the Masimo reference by over 7%, which suggests that an 

improved algorithm is required to obtain potentially more accurate SpO2 measurements 

during activity. Fig. 4.1 shows that using the algorithm designed by Johnston [12], SpO2 

readings approached 85% for cases where the PPG signal was dominated by the effects of 

motion artifacts, which has also been described in [13]. This occurs since during intense 

movements, the effects of motion artifacts dominate the ACR and ACIR signals which 

cause the amplitudes to be equivalent. The resulting R values equal 1, so SpO2 readings 

of 85% are calculated [13]. 
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Figure 4.1. Typical resting and jogging SpO2 readings measured by Masimo

®
 SET 

(solid) and the SpO2 algorithm devised by Johnston (dashed) [12]. 

 

4.2. ACCURACY OF HR MEASUREMENTS DURING JOGGING 

 

The Signal Derivative algorithm developed by Johnston was used to extract HR 

readings from PPG signals. The Signal Derivative algorithm calculated HR readings 

obtaining differentials of PPG signals and peak identification [12]. The algorithm also 

incorporated a Peak-Count Based averaging routine in order to derive a HR reading from 

several instantaneous heart rate (IHR) measurements. 

Despite promising results obtained during rest [12], this algorithm was not suitable 

for accurate HR measurement during jogging due to decreased SNR in PPG signals.  Fig. 

4.2 shows typical HR readings obtained from a forehead-worn PPG sensor during indoor 

jogging, demonstrating that the Signal Derivative algorithm provided unreliable readings 

during this type of activity. Inaccurate readings were obtained using this algorithm since 
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it incorporated all IHR values into an average HR reading. Therefore, values due to 

erroneous and missed peaks were not removed from the calculation of HR. Also, other, 

more advanced signal processing techniques were not implemented to reduce the effects 

of motion artifacts in corrupted PPG signals.  From the example depicted in Fig. 4.2, it is 

evident that the HR measurements extracted by the software developed by Johnston [12] 

were relatively inaccurate. These measurements were due to missed true peaks (false 

negatives) as well as the detection of erroneous peaks (false positives). HR extracted 

using the Signal Derivative algorithm deviated from the Polar™ reference measurements 

by more than 15% during movement, although during rest, ± 4bpm was considered a 

clinically acceptable accuracy [13]. 

Due to an increased degree of breathing, PPG signals acquired activity jogging 

showed noticeable amplitude modulation [14]. Preliminary experimentation indicated 

that fluctuation in signal amplitude during jogging caused signal slopes to change 

significantly which lead to missed signal peaks when the Signal Derivative algorithm was 

employed. A representative PPG signal acquired during jogging is shown in Fig. 4.3. Due 

to changes in morphology and slope the signal peaks were missed by the peak detection 

algorithm. This caused erroneous IHR measurements to be incorporated into the average 

HR measurement. 

Commercially available pulse oximeters, such as Masimo Signal Extraction 

Technology (SET
®
), typically employ intelligent software algorithms designed to cancel 

the effects of motion artifacts in real-time [22]. Despite the success of the Masimo SET
®
, 

our preliminary investigation during jogging suggests that measurements remain 

inconsistent as shown in Fig. 4.3. The acquisition of inconsistent HR measurements from 
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the Masimo SET
®
 pulse oximeter, which is considered to be a widely popular pulse 

oximeter, suggests that the Masimo could be inappropriate for use in field applications. 
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Figure 4.2. Typical Polar™ ECG reference (solid), Masimo HR (dashed) and HR 

readings measured by the custom pulse oximeter (dotted) during indoor jogging. 
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Figure 4.3. Typical PPG signal acquired during jogging. Arrows designate missed 

peaks. 
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5. REDUCING THE EFFECTS OF MOTION ARTIFACTS 

 

Reducing the effects of motion artifact is a challenging problem since the frequency 

of movement is not known a priori and it can be within the range of the cardiac spectrum. 

Since the body acceleration and cardiac frequency spectra share a frequency band, 

ordinary LP or BP filters with constant cutoff frequencies cannot be utilized to remove 

the frequency component that results from body movements (shown in Fig. 3.7). Several 

advanced signal processing techniques suggested in the literature to overcome the effects 

of motion artifacts were reviewed. The following three sections review several potential 

methods for the reduction of motion artifacts in PPG signals. 

 

5.1. INDEPENDENT COMPONENT ANALYSIS 

 

A statistical analysis tool known as independent component analysis (ICA) has been 

studied by Kim et al [37] and Stetson et al [38] to reduce movement artifacts in PPG 

signals.  ICA is a specific form of principal component analysis (PCA) which is a method 

of transforming a signal, or a dataset, into simpler parts, known as principal components, 

which can be used to simplify feature extraction in the data. ICA differs from PCA in that 

the separate components are statistically independent [39, 40]. 

The ICA model assumes independence between the motion artifact and PPG signal 

sources [37, 38]. However, some authors have suggested that movement and PPG signals 

are dependent [41, 42] which contradict the assumption of ICA for motion artifact and 

PPG signals. Generally, since motion artifacts are considered to arise from sensor 

movement in relation to the skin, motion and signal components should not be considered 

independent. 
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The literature suggests that an ICA-based method could be used to exploit certain 

statistical characteristics of PPG signals in order to separate and remove interference 

components from corrupted PPG signals [37, 38]. In simulated conditions, it was shown 

that an ICA-based approach provided an improvement in the SNR of PPG signals [38]. 

However, the results were limited to PPG signal quality and improvement in SNR but 

improvements in measurement accuracy were not reported. Also, since the types of 

motion artifacts induced included moderate hand motions rather than larger motions that 

would be observed in the field, the potential advantages of ICA in a practical setting are 

not clear. 

Furthermore, the complexity of the software associated with this method could limit 

the feasibility of its implementation in an embedded µC [43]. For instance, the 

implementation of an ICA-based algorithm has not been demonstrated for use in a real-

time and wearable device. Therefore, due to limited results as well as the significant 

degree of complexity regarding implementation of this algorithm, an ICA-based software 

algorithm was not considered for further study. 

Two other approaches that could potentially help to reduce the effects of motion 

artifacts in PPG signals incorporate additional signals to reduce the effects of motion. 

These methods include three-wavelength oximetry and accelerometer-based adaptive 

noise cancellation as described below. 

 

5.2. THREE-WAVELENGTH OXIMETRY 

 

To reduce the effects of motion artifacts, Hayes and coworkers have suggested the 

use of an LED that emits light at a certain wavelength not common to the conventional R 
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and IR wavelengths utilized in pulse oximeters [41, 44, 45]. These authors have implied 

that signals obtained from an LED of a certain wavelength could be used as an indication 

of the noise present in motion-corrupted PPG signals. This method would require the 

absorption properties of such a wavelength to be independent of changes in arterial blood 

volume. 

Additionally, despite the claims put forward by Hayes and Smith [41], little evidence 

has been presented in the literature regarding the implementation of an LED that 

illuminates at a suitable wavelength for this method. Although, some authors have 

suggested that this approach could be feasible for improving measurements obtained by a 

pulse oximeter [46], results have been limited. 

For instance, employing this methodology, Hayes and Smith showed improvements 

in PPG signal quality during moderate hand movements [41, 44, 45]. The method has 

shown an improvement in SNR of the PPG signal during finger movements, such as 

tapping and waving, which could be found in a clinical setting [45]. Despite this success, 

it is disappointing to note that improvements in SpO2 and HR measurement accuracy 

have not been reported. Further, a practical disadvantage of this approach is that 

supplying current to an additional LED could reduce battery life of a wearable pulse 

oximeter by about 33% which is undesirable for a battery powered device. Additionally, 

since the methodology assumes that only small changes in path length occur [45], this 

suggests that the technique would not be feasible for field applications during which 

larger movements are imposed on the sensor. 

Despite the relatively small size of an LED, the integration of an additional LED into 

a wearable pulse oximeter has several disadvantages. It should be noted that 
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incorporating a third LED within a conventional pulse oximeter would complicate the 

sensor as well as the electronics associated with sampling the additional light absorption 

signal. The increase in power consumption and sensor complexity are significant short-

comings to this method. Also, since light absorption is related to blood constituents, there 

is limited potential to implement an LED whose absorption properties in tissue are 

independent of changes in arterial blood volume. Therefore, due to the disadvantages 

associated with the increasing the complexity of the pulse oximeter, increased power 

consumption, and since a limited amount of results regarding this approach have been 

presented, it was eliminated from further investigation. 

 

5.3. ADAPTIVE NOISE CANCELLATION 

 

The most promising approach to reduce the effects of motion artifacts is based on 

adaptive noise cancellation (ANC). The method utilizes body acceleration signals as a 

reference to the motion artifact components present in the corrupted PPG signals. ANC 

implements a notch filter with a rejection band centered at the frequency of body 

acceleration signal. 

Acceleration signals can be obtained from micro-electromechanical system (MEMS) 

accelerometers (ACC) which are fabricated within small-size and low-power integrated 

circuits (IC). Employing a MEMS ACC as a noise reference for adaptive noise 

cancellation of motion artifacts in pulse oximetry has been suggested by several 

researchers [42, 47-51]. This approach was found to be promising since initial studies 

have included minor hand motions [47-49] as well as jogging activity [42, 50] which is of 

particular interest since our goal is to develop a method of remote physiological 
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monitoring from mobile individuals. 

It should be noted that body acceleration signals provided by an ACC can be 

processed to determine the level of activity and body orientation of an individual [52]. 

This information would be particularly useful during remote monitoring and triage 

applications since it would enable medics to determine better the overall physiological 

state of an individual. Therefore, implementing ACC-based ANC would not increase the 

power consumed by the pulse oximeter since an ACC would be utilized for body 

acceleration and orientation information despite the method employed for the reduction 

of the effects of motion artifacts. 

 Further, it has been shown in the literature that an accelerometry-based ANC 

algorithm can provide improvements in HR measurements derived from a sensor attached 

to the fingers [48, 49, 51]. However, despite promising results, it was not reported 

whether more accurate SpO2 measurements could be extracted from the recovered PPG 

signals and studies did not investigate the potential utility of transducers worn on the 

forehead which is a more practical measurement location compared to the fingers. 

 The ANC approach has been particularly promising since initial experimentation 

conducted for this thesis has demonstrated the efficacy of the ANC approach for the 

reduction of the effects of motion artifacts by a forehead-mounted PPG sensor during a 

study which included treadmill jogging [35, 36]. Although methods employing other 

signal processing techniques have been suggested by other researchers [37, 41], studies 

have been limited to moderate hand motions rather than running and improvements in 

SpO2 and HR measurement accuracy were not reported. Work presented in the literature 

as well as our preliminary investigations suggest that the ACC-based ANC would be 
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effective in reducing the effects of motion artifact during jogging which is of particular 

interest for telemedicine applications. 
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6. ADAPTIVE NOISE CANCELLATION THEORY 

 

An adaptive filter is a type of filter implemented in software that provides adjustable 

cutoff frequency based on filter input and output. This type of filter is required for certain 

applications in which the noise frequency to be removed is not known a priori. 

Adjustment of filter coefficients is performed by software algorithms designed to adapt 

continually to system input. 

An ANC system can be modeled as a notch filter with a variable notch frequency that 

cancels the frequency of body acceleration which is used as a noise reference input [53]. 

The principle of noise removal is effective for noise comprised of two frequencies given 

that these frequencies are provided by the noise reference input [54]. 

The coefficients of the adaptive filter adjust to possess a band-pass filter (BPF) 

frequency response with a pass band centered around the frequency of the reference noise 

signal. Thus, the frequency of the noise present in the reference signal passes through the 

filter and is subtracted from the desired signal to remove the noise components. Widrow 

et al have demonstrated an example of adaptive noise cancellation theory applied to 

biomedical signals by the utilization of a maternal electrocardiograph (ECG) signal as a 

noise reference to recover the fetal ECG signal which is generally confounded by the 

frequency of the maternal ECG [54]. 

The adaptive filtering process consists of three separate stages: (1) filtering the noise 

reference input signal x[n], (2) subtracting the filtered noise reference input y[n] from the 

desired signal d[n], and (3) adjusting the filtering coefficients, or tap-weights wi[n], based 

on the difference between d[n] and y[n], known as the error signal e[n]. An adaptive filter 

block diagram is illustrated in Fig. 6.1. An assumption of the ANC system is that the 
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input noise reference and desired signals are not statistically correlated and that the noise 

contained in the reference input signal x[n] is added to d[n] as x1[n], which is the true 

noise present in the desired signal. The filter tap-weight vector wi[n] is calculated 

iteratively based on an updating algorithm such as the Least-Mean-Square (LMS) and the 

Recursive Least-Squares (RLS) algorithms due to their simplicity and popularity. Fig. 6.2 

shows the block diagram of the Adaptive Filter portion of the ANC system. Similar to 

ordinary LP or HP filters, the adaptive filter component consists of scaling and summing 

M filter inputs. ANC systems are unique since the scaling vector changes continually 

during use of the adaptive filter. 

         
Figure 6.1. Adaptive noise cancellation block diagram. 

 

 

 
Figure 6.2. Diagram of adaptive filter component of the ANC system. The noise reference 

input (x[n]) is passed through a delay line (represented by z blocks); the tap-weights (bi) 

multiply the delayed x[n-i] which are summed to form y[n] [53]. 
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6.1. LMS AND RLS ALGORITHMS 

 

The LMS and RLS are two mean square error reduction algorithms which can be used 

to update the tap-weights of an adaptive filter. 

 

LMS Algorithm 

The LMS algorithm approximates the method of steepest descent optimization function 

and the instructions used to implement the algorithm can be executed by a small number 

of discrete-time operations. The number of computations required to implement the LMS 

algorithm is relative to the filter order, M, which is the number of filter coefficients 

within the adaptive filter tap-weight vector; this degree of complexity is comparable to 

the complexity of a finite impulse response (FIR) filter with a weight vector composed of 

fixed values [55]. 

In additional to the filter order parameter, µ, the LMS algorithm consists of the scalar 

µ, known as the step-size, which is a design parameter that affects the learning rate, 

stability, and band-width of the adaptive filter. Step-size is generally chosen empirically 

based on the statistical properties of the input signal. 

Equation (6.1) represents the adaptive filter portion of the LMS filter. y[n] is the 

adaptive filter output, M is the filter order, wi[n] is the tap-weight vector, and x[n] is the 

noise reference input signal. 

][][][
1

0

inxnwny
M

i

i −•= ∑
−

=

    (6.1) 

The output of the ANC, e[n], is formed by subtracting the filtered input signal, y[n], from 

the desired signal, d[n], as shown by equation (6.2). 

y[n]d[n]e[n] −=      (6.2) 
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The following equation illustrates the simplicity of the LMS algorithm. The filter tap-

weights change dynamically as shown by equation (6.3). 

][][][]1[ neinxnwnw ii •−•+=+ µ    (6.3) 

where wi[n] is the present filter coefficient, µ is the step-size, e[n] is the present error 

signal, x[n-1] is the present input signal, and the index of the filter weights, i, varies from 

0 to M-1, where M is the filter order. The LMS adaptive algorithm consists of 2M + 1 

multiplications per iteration [56]. 

A primary advantage of the LMS algorithm is that a low number of computations are 

required relative to the RLS-based adaptive algorithm. In general, the amount of 

resources (i.e. memory, execution time, processor power) needed to implement the LMS 

algorithm is less than the RLS algorithm. 

The µ parameter associated with the LMS adaptive filter affects directly the updating 

process of the adaptive filter coefficients. For example, the literature shows that high-

valued µ (i.e. µ = 0.075) provide a relatively higher rate of convergence compared to 

small-valued µ (i.e. µ = 0.0075) [53]. However, µ affects the ensemble-average-square 

error obtained by the adaptive filter. For instance, although there was a longer 

convergence time associated with µ = 0.0075, the literature showed that this value 

provided a lower error compared to µ = 0.075 [53]. Similarly, the λ parameter affects the 

“memory” of the RLS adaptive filter. Although λ = 1 during theoretical analysis of the 

RLS algorithm, several authors suggest that 0.9999 ≤ λ ≤ 1 in practice [53, 57, 58].  

 

RLS Algorithm 

The RLS algorithm operates on the same basis as the LMS algorithm although the scaling 
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factor, known as the step-size parameter of the LMS algorithm, is known as the Kalman 

gain of the RLS algorithm. Additional signal processing requirement associated with the 

RLS algorithm provides a faster learning rate and can obtain a smaller error signal at the 

cost of longer execution time and processor power consumption. Specifically, the RLS 

algorithm performs 1.5M
.2
 + 4.5M multiplications per iteration. 

The filter coefficients change dynamically based on the RLS algorithm which 

incorporates the following tap-weight update function, shown in equation (6.4). 

  ]n[*]n[k]n[ŵ]1n[ŵ ii ξ•+=+      (6.4) 

where, 

]n[]n[u

]n[
]n[k

H π•+λ

π
=  

]n[u]1n[P]n[ •−=π  

]n[u]1n[ŵ]n[d]n[ H •−−=ξ  

and 

]n[P]n[u]n[k]n[P]1n[P H11 ••λ−•λ=+ −−  

 

Comparison of LMS and RLS Algorithms 

Although the LMS and RLS adaptive algorithms provide similar adaptive noise 

cancellation, the algorithms differ significantly by their learning rate and computational 

complexity. The learning rates of the LMS and RLS algorithms are quantified as 20M 

and 2M, respectively. This implies that a low order RLS adaptive filter can learn quickly 

and potentially remove noise from a desired signal to a degree similar to a higher order 

LMS filter. Filter order has significant implications since a low order filter implies less 

computational cost, which is desirable in real-time applications. Additionally, the RLS 
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algorithm requires on the order of M
.2
 computations per iteration, which is significantly 

larger than the LMS algorithm which requires only M computations per iteration. The 

specific processing requirements of the RLS and LMS algorithms include the 

computation of 1.5M
.2
 + 4.5M and 2M + 1 multiplications per iteration, respectively. 

Note that the computational complexity and SpO2 and HR measurement accuracy are the 

primary considerations in the implementation of the LMS and RLS algorithms for real-

time applications. 

 

6.2. ACCELEROMETER-BASED ANC 

 

It has been suggested that acceleration signals provided by an ACC can be used to 

model the general motion which corrupts the PPG signal [42]. Preliminary 

experimentation has confirmed that the frequency of body acceleration is present in PPG 

signals acquired during jogging and that an ACC integrated within a forehead-worn PPG 

sensor can be used to measure the frequency of body acceleration. Foo et al [49] have 

shown promising results by utilizing a triaxial ACC while Asada et al [59] have 

suggested that using a single-axis ACC could provide significant reduction of the effects 

of motion artifacts. 
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7. RESEARCH OBJECTIVES 

 

An accelerometry-based ANC approach was investigated to determine the ability to 

improve the SNR of PPG signals and to increase the accuracy of SpO2 and HR 

measurements extracted from motion corrupted PPG signals. The following is a list of the 

specific objectives. 

 

Objective 1 

To design and test the accuracy of improved software routines developed by Johnston 

[12] to reject erroneous readings typical during jogging activity and extract SpO2 and 

HR from R and IR PPG signals during jogging. 

 

Objective 2 

To design and test the accuracy of ACC-based ANC software to adaptively filter 

corrupted R and IR PPG signals during jogging. 

 

Objective 3 

To determine the effects of spectral overlap between ACC and PPG signals. 

 

Objective  4 

To determine the feasibility of implementing the proposed ANC software routine within 

an embedded TI-MSP430 µC environment. 
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8. METHODOLOGY 

 

8.1. PRELIMINARY EXPERIMENTS 

 

A preliminary study was performed to determine the effects that changes in 

physiology had on measurements without corruption by motion artifacts. In order to 

conduct this study, body acceleration, PPG and measurement data were acquired from an 

individual during 1-minute stationary cycling trials framed by 2-minute sitting periods. 

Fig. 8.1 shows the commercial stationary bicycle used for preliminary experimentation. 

The experimental setup also consisted of the custom pulse oximeter (SM and RM 

components) and the Masimo SET™ pulse oximeter employing a forehead-worn sensor, 

which was used since the hands were needed for body stabilization during cycling. 

 
Figure 8.1. Commercial stationary bike used for preliminary experimentation. 

 

8.2. EXPERIMENTS 

 

To address the objectives of this thesis, a series of outdoor and indoor experiments 

were conducted to determine the feasibility of ACC-based ANC to increase the accuracy 

of SpO2 and HR measurements when subjects are active. 

 

8.2.1. EXPERIMENTAL SETUP AND PROCEDURE 

Fig. 8.2 shows the experimental setup for data collection during treadmill jogging. 



www.manaraa.com

 37 

Participants were instructed to grasp the backpack strap to keep the finger-worn sensor in 

a stationary position during free indoor and outdoor jogging. 

As previously described, the forehead-worn reflectance SM consists of an optical 

transducer, a stack of round PCBs, and a coin-cell battery. It should be noted that the 

current draw associated with the LEDs located on the SM were configured to the default 

setting of 5mA. The belt-worn RM is comprised of an embedded µC for processing 

information acquired wirelessly from the SM via a RF link, an RF transceiver, and two 

1.5VDC batteries [27]. For data storage, data were transmitted from the RM via a 

Universal Asynchronous Receive Transmit (UART) to a laptop PC carried by the PI 

during the studies. 

 
Figure 8.2. Experimental setup. 

 

LabVIEW software was utilized for collection of body acceleration, PPG data, and 

Masimo SET
®
 SpO2 and HR reference measurements. Jogging experiments were 

performed on a treadmill (N = 16), indoors on free terrain (N = 12) and outdoors on free 

terrain (N = 4). Treadmill jogging was incorporated into this study since it ensured that 

RM 
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Oximeter 
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motion was maintained at a constant rate. Indoor and outdoor jogging allowed volunteers 

to jog at a free pace and move more naturally. 

Participants performed 1-minute jogging trials (treadmill rates: 3.5 – 6.5mph) framed 

by 2-minute resting periods. To test SpO2 and HR accuracy over a wide range, a brief 

hypoxic event was incorporated into three trials. SpO2 and HR reference measurements 

were acquired from the Masimo SET
®
 pulse oximeter employing a finger-worn 

transmission sensor which was immobilized during the experiments. In addition, HR 

reference measurements were obtained from a chest-worn Polar™ ECG monitor. Seven 

healthy, non-smoking volunteers (6 males, 1 female), ages ranging from 22 to 27 years, 

participated for this study. Institutional Review Board (IRB) approval was obtained prior 

to experimentation. For safety reasons, restrictions of the experimental protocol by the 

IRB required that SpO2 readings do not drop below 94% for longer than 1 minute and HR 

values should not exceed 130bpm for more than 2 minutes in a given trial. 

 

8.2.2. DATA ACQUISITION SYSTEMS 

The body acceleration and PPG data were acquired by a laptop PC via a DAQCard-

6063e data acquisition card, BNC-2120 breakout box and RS-232 serial connection. A 

custom LabVIEW program was utilized to store body acceleration and PPG data for 

offline Matlab processing. The custom LabVIEW software also acquired SpO2 and HR 

readings from the Masimo pulse oximeter via RS-232 serial connection. HR data 

acquired by the Polar™ ECG were stored within the Polar™ wrist watch module and 

extracted after the study was completed. 

Raw PPG data were filtered offline in Matlab in order to separate the signal into AC 

and DC components. A 2
nd

 order Butterworth LPF (FC = 0.05Hz) and a 6
th
 order 
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Butterworth BPF (FC1 = 0.5Hz, FC2 = 3.0Hz) were utilized to obtain DC and AC 

components, respectively. Similar filters were used by Johnston in order to separate the 

frequency of interest from the raw PPG signals [12]. 

The tri-axial ACC provided body acceleration signals, which were sampled by the 

LabVIEW hardware, although the analog-to-digital converter (ADC) contained within the 

TI-MSP430 microcontroller (µC) could be utilized to sample the analog output signals 

from the ACC. The ACC signals were filtered offline in Matlab in order to separate the 

AC and DC components of body acceleration. AC signals were obtained by using a 6
th
 

order Butterworth BPF (FC1 = 0.5Hz, FC2 = 3.0Hz). The AC signals were utilized in the 

ACC-based ANC algorithm. 

 

8.2.3. AVERAGING SPO2 AND HR MEASUREMENTS 

Measurement averaging times for the Masimo pulse oximeter were selected as 10s as 

a compromise between the fast (2s) and slow (16s) averaging settings available in the 

commercial pulse oximeter; the SpO2 and HR measurements extracted from the PPG 

signals acquired unobtrusively from the forehead-worn SM were averaged by 10s 

averaging windows (8s was also used for 6 of 32 trials). To be consistent, the R-wave 

interval times (RR intervals) provided by the Polar™ ECG were averaged by a moving 

averaging window of identical size. The range of averaging times (2s to 16s) of the 

Masimo SET
®
 is typical for commercial pulse oximeters [28]. 

 

8.3. OFFLINE PROCESSING  

 

Raw body acceleration and PPG data were collected by LabVIEW and stored in a file 

format readable by Matlab. Processing of SpO2 and HR data were performed in Matlab. 
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Statistical analyses were performed using the SAS software environment. 

 

8.3.1. EXTRACTION OF SpO2 AND HR MEASUREMENTS  

Algorithms for SpO2 and HR extraction algorithms were written in Matlab based on 

software described by Johnston [12]. 

 

SpO2 Readings 

The SpO2 Differential algorithm developed by Johnston [12] incorporated a routine to 

reject PPG signal derivatives that were equivalent to 0. In an effort to reduce the effects 

of motion artifacts, the SpO2 Differential algorithm was modified to remove derivative 

values that were less than a threshold value. The threshold was based on the mean signal 

derivative value of the AC component of the PPG signals. The modified software was 

designed to reject outlying signal derivative values since erroneous signal derivatives 

occurred during motion. 

 

Averaging of HR Readings 

HR readings were obtained in software by averaging several IHR measurements. The 

Peak Count-Based Averaging scheme that was devised by Johnston [12] was dependent 

on IHR peak count. Therefore, fluctuations in HR level caused variations in averaging 

window size which resulted in inconsistent HR measurements. This averaging routine 

was modified by implementing the Time-Based Averaging algorithm which was based on 

a constant-length time averaging window. This modification was implemented in order to 

prevent the HR value from affecting the averaging window. 
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R and IR Based HR Algorithm 

The Signal Derivative algorithm devised by Johnston [12] extracted HR readings from 

PPG signals by processing the AC component of the IR signal. In order to obtain 

potentially more accurate HR readings during jogging, this algorithm was modified to 

incorporate the AC component of the R signal. The detection of multiple peaks as well as 

missed peaks contributes to inaccurate HR readings. The R and IR Based HR Algorithm 

modification was based on the rejection of outlying IHR values measured from either the 

R or IR signals. For instance, an IHR measurement extracted from the R signal would be 

incorporated in the average HR reading unless the value differed significantly from the 

IHR measurement obtained from the IR signal and visa versa. 

 

IHR Threshold 

An additional modification was incorporated the calculation of HR in order to extract 

more accurate HR readings. Similar to the R and IR Based HR Algorithm, this algorithm 

change consisted of calculating more accurate HR readings by removing significantly 

outlying IHR values. A threshold based on the average HR reading was utilized to 

classify outlying IHR readings. Therefore, if an IHR value was significantly lower or 

higher than the average HR reading, the IHR value would not be incorporated in the 

calculation of HR. 

In addition to implementing the modifications to the SpO2 and HR algorithms, ACC 

and PPG data were analyzed to determine the efficacy of obtaining more accurate 

readings by making use of ANC software available in Matlab. 

 

8.3.2. ACCELEROMETER-BASED ADAPTIVE NOISE CANCELLATION 
An accelerometry-based adaptive noise cancellation algorithm was implemented 
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offline in Matlab. Analyses included testing the effects of filter order as well as step-size 

and forgetting factor parameters of LMS and RLS adaptive algorithms, respectively. Root 

mean squared errors (RMSE) were calculated as the mean difference between the 

reference measurement and measurement obtained from the custom pulse oximeter 

during jogging; RMSE were used as an indication of the performance of the adaptive 

filter algorithms. 

 

Accelerometer Axis Selection as a Noise Reference Input Signal 

Experiments were performed to determine which axis of the ACC could provide the most 

appropriate noise reference input to reduce the effects of motion artifacts. The orthogonal 

X, Y, and Z axes, as well as the linear summation (X+Y+Z), were processed as noise 

reference inputs of the acceleration axes. 

 

Filter Optimization 

The step-size (µ) and filter order (M) of the LMS adaptive filter were varied separately to 

determine the optimal filter parameters. Likewise, the forgetting factor (λ) and filter order 

(M) were varied to independently determine the optimal parameters of the RLS filter. 

Adaptive filter order affects the execution time, learning rate, and RMSE. Separate 

studies were performed to determine the optimal type and order for the adaptive filter 

algorithms by implementing these algorithms inside the embedded µC. 

 

8.3.3. ACC AND PPG SIGNAL TIME DIFFERENCE 
It has been suggested in the literature that significant time differences exist between 

body acceleration and PPG signals [59]. The effect of time delays between ACC and PPG 

signals on measurement accuracy was investigated by calculating the cross-correlation 
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for various time-shifts. To determine the potential effect of time lags between ACC and 

PPG signals could have on measurement accuracy, SpO2 and HR measurements were 

calculated for the time-shifted signals. 

 

8.3.4. ACC LOCATION 
In order to obtain a reference signal for the ACC-based ANC algorithm, an ACC was 

incorporated into the forehead-worn PPG sensor. A study was not performed to 

determine the effect of ACC placement on various body locations since an inherent 

assumption of the ACC-based ANC algorithm is that signal corruption is due to local 

perturbations at the skin-sensor interface. 

 

8.4. SPECTRAL OVERLAP 

 

The adaptive noise canceling process can be modeled as an FIR noise-reject filter 

with an adapting cutoff frequency. The frequency spectrum of ACC and PPG signals can 

overlap if stepping frequency coincides with the cardiac frequency. It was suggested by 

Asada et al that similar acceleration and cardiac spectral bands can cause attenuation of 

the cardiac frequency and lead to inaccurate readings [60]. Since it was expected that 

body acceleration matching the subject’s cardiac frequency would cause deterioration in 

the SNR of the recorded PPG signals, we investigated the effect of cardiac and motion 

frequency overlap. 

 

Spectral Overlap Simulation 

In order to simulate frequency overlap conditions, sine waves were created and processed 

to mimic body acceleration and PPG signals offline in Matlab using custom ANC 
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routines. Various degrees of spectral overlap were studied by simulating body 

acceleration and PPG signals over a range of frequencies. To determine the effects of 

spectral overlap simulations, the spectral content of the sine waves were determined 

before and after ANC processing. 

 

Spectral Overlap Experimentation 

Experimental trials that possessed body acceleration and PPG signals with overlapping 

spectral bands were processed by adaptive filters in Matlab and measurements were 

extracted from the adapted signals to determine the effect of spectral overlap during 

running trials. Measurement accuracy was compared before and after applying the ANC 

algorithm. 

 

 

8.5 REAL-TIME ADAPTIVE NOISE CANCELLATION 

 

In order to determine the feasibility of implementing an ACC-based ANC algorithm 

in an embedded µC, the LMS and RLS adaptive algorithms were implemented within the 

TI-MSP430 and execution times were measured. Two methods were considered: (1) 

utilizing Simulink and Real-Time Workshop
®
 software (Matlab™) to generate the C 

code for implementing the algorithms, and (2) developing custom written LMS and RLS 

algorithms based on the discrete-time functions commonly available in the literature. 

 

Real-Time Workshop (Matlab™) 

A potential approach to implement an ANC algorithm in an embedded µC is to utilize 

Simulink and Real-Time Workshop
®
 software. Generally, since the LMS and RLS 

adaptive algorithms are comprised of basic discrete-time operations, it is simpler to 
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design custom adaptive functions in the C programming language than to employ 

functions generated via Real-Time Workshop
®
. 

 

Custom LMS and RLS Algorithms 

Custom ANC functions were implemented in Matlab based on the LMS and RLS 

algorithms. The outputs of the custom functions were compared to the outputs of the 

Matlab functions in order to verify that the custom routines provided the same 

functionality as the Matlab routines. Since the focus of this work is on real-time 

processing, the custom algorithms were rewritten in the C programming language and 

implemented within the TI-MSP430 microcontroller (µC) environment to determine the 

feasibility of implementing adaptive algorithm software in a real-time embedded µC. 
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9. RESULTS 

 

9.1. PRELIMINARY RESULTS 

 

In order to determine the effects of physiological changes on SpO2 and HR 

accuracies, stationary cycling experiments were conducted. Representative PPG signals 

acquired during cycling, as shown in Fig. 9.1, were processed in Matlab. Fig. 9.1 shows 

that PPG signals obtained during rest had slightly greater amplitudes than signals 

obtained during cycling. This result could have been caused by differences in breathing 

during bicycling as compared to breathing during resting. Also, due to body activity 

associated with cycling, these PPG signals had a higher frequency content than signals 

obtained during rest. 
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Figure 9.1. Representative IR PPG signals before, during, and after stationary bicycling. 

 

Fig. 9.2 shows representative FFT spectra of body acceleration and PPG signals. This 

result indicated that the frequency spectra of the PPG signals acquired during bicycling 

were similar to the frequency content during rest, shown in Fig. 3.7. Compared to 

Resting Stationary Bicycling Resting 
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jogging, there was a low degree of movement during cycling, although the FFT spectra of 

the ACC signals show a frequency band centered near 1Hz coinciding with the rate of 

body acceleration. Due to limited body movement, the FFT spectra indicated that the 

ACC signals have a relatively low SNR. In addition, Fig. 9.2 shows that the FFT spectra 

of the PPG signals did not change after processing using the ANC algorithm. This 

occurred because the PPG signals were not compromised by motion. 
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Figure 9.2. (A) Representative FFT spectra of IR PPG, (B) R PPG, and (C) 

corresponding ACC signals during stationary bicycling. 
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9.2 ALGORITHM MODIFICATIONS 

 

In order to extract more accurate SpO2 and HR measurements during jogging the 

algorithms developed by Johnston [12] were modified. The modifications described in 

the Background section were implemented in Matlab. These modifications were 

integrated with ACC-based ANC software as described in Section 8.2.3. 

 

9.2.1. EXTRACTION OF SpO2 MEASUREMENTS 

In order to remove signal derivatives associated with motion artifacts, an adaptive 

signal differential threshold was incorporated into the SpO2 algorithm devised by 

Johnston [12]. Fig. 9.3 shows a typical resting PPG signal, its corresponding derivatives. 

The SpO2 Differential Threshold algorithm, shown in Fig. 9.3 (D), was designed to be 

adjustable based on past signal derivatives; derivative values that do not meet the 

threshold were discarded. 

Fig. 9.4 shows a typical PPG signal and its corresponding derivatives acquired during 

jogging. SpO2 measurements extracted from the PPG signals acquired during jogging are 

shown in Fig. 9.5. These measurements were obtained using the algorithm developed by 

Johnston [12] and the SpO2 Differential Threshold described in the Background section. 

Fig. 9.5A provides an example of an experimental trial during which SpO2 readings 

increased slightly during jogging (with the exception of the hypoxia period). Conversely, 

Fig. 9.5B shows an example of an experimental trial during which SpO2 readings 

decreased during the jogging activity. 
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Figure 9.3. (A) Typical resting PPG signal, (B) corresponding derivative, and (C) 

absolute derivative. The absolute derivative and the adapting derivative threshold are 

shown in (D). 
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Figure 9.4. (A) Typical PPG signal during jogging, (B) corresponding derivative, and 

(C) absolute derivative. The absolute derivative and the adapting derivative threshold are 

shown in (D). 
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Figure 9.5. Representative SpO2 measurements. (A) An example of a jogging trial during 

which the calculated SpO2 approached 100%. (B) An example of a jogging trial during 

which the calculated SpO2 approached 85%. 
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Generally, compared to the algorithm devised by Johnston, the modified SpO2 

algorithm produced lower SpO2 measurements. Since SpO2 readings decreased 

(approached 85%) during jogging, the additional drop in values associated with the SpO2 

Differential Threshold caused less accurate measurements to be obtained during jogging. 

Lower SpO2 values were due to the rejection of derivative values that did not meet the 

threshold which adapted based on prior signal derivatives. 

 

9.2.2. EXTRACTION OF HR MEASUREMENTS 

 

Time-Based Averaging 

The Peak Count-Based Averaging routine designed by Johnston [12] was based on 

calculating the mean of 10 IHR values. Since this averaging scheme would incorporate 

the 10 most recent IHR values, the major drawback was that the length of time 

represented by the HR measurement changed depending on the heart rate. Conversely, 

the Time-Based Averaging scheme described in the Background section incorporated a 

time window of constant length. Therefore, HR calculated using this method consistently 

represented 10s of heart beats. 

Fig. 9.6 shows HR measurements obtained from Peak Count-Based Averaging 

according to Johnston [12], Time-Based Averaging, and Polar™ HR measurements 

acquired concurrently during rest. The results show that the Peak Count-Based Averaging 

window is affected by the value of the HR. For example, the Peak Count-Based 

Averaging scheme incorporated 10 past IHR values, although the modified averaging 

scheme incorporated the past 10s of IHR values. Therefore, as shown in Fig. 9.6A, the 

averaging schemes provided similar measurements for an average HR of 60bpm. 

Conversely, Fig. 9.6B shows that during more rapid HR, where 10 beats represents less 
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time (the Peak Count-Based Averaging routine provides 6s window an average HR of 

95bpm), the measured HR values differed significantly. In this example, since the Peak 

Count-Based Averaging scheme averaged less IHR values, the average HR responded too 

quickly to changes in HR. Therefore, HR readings were more instantaneous and did not 

indicate a more accurate average HR measurement. 
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Figure 9.6. HR measurements extracted during rest using Peak Count-Based Averaging 

(dashed) and Time-Based Averaging (dotted) routines. HR readings of 60bpm (A) and 

95bpm (B) are shown. 
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Extraction of HR from R and IR PPG Signals 

Heavy respiration during jogging caused significant changes in the amplitude of the PPG 

which lead to missed peak identification in the IR signal, as shown in Fig. 9.7A. In this 

example, missed peaks caused erroneous IHR values to be incorporated into the 

calculation of HR. Since respiration did not affect the R signal to the same degree as the 

IR signal, missed peaks occurred less frequently (shown in Fig. 9.7B). Therefore, to 

acquire more accurate HR during jogging, the algorithm devised by Johnston [12] was 

modified to incorporate IHR values extracted from the R signal. 
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Figure 9.7. (A) Typical IR and (B) R PPGs acquired during jogging. * indicate 

automatic software-detected peaks. 

 

The R PPG signal also provided a means of verifying the IHR values extracted from 

the IR signal. IHR values extracted from the R PPG that were greater than 200% or less 

than 50% of the IR IHR values were not incorporated into the calculation of HR. The 

range of values greater than 200% and less than 50% were selected in order to remove 
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outlying IHR values due to the detection of multiple and missed peaks, respectively. Fig. 

9.8 shows IHR values extracted from each PPG signal. The rejected IHR values are 

indicated by asterisks. Generally, this modification to the algorithm helped to reject 

erroneous IHR values. 
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Figure 9.8. IHR measurements extracted from the IR (solid) and R (dashed) PPG signals. 

* indicate rejected IHR measurements.  

 

IHR Threshold 

The IHR Threshold Routine was incorporated into the algorithm to reject IHR 

measurements that were outside the range of recent HR readings. To obtain more 

accurate HR measurements, IHR values extracted from R and IR signals were compared 

to a threshold based on the average HR measurement. Similar to the Extraction of HR 

from R and IR Signals, the IHR Threshold modification rejected IHR values that were 

greater than 175% and less than 50% of the average HR (this range was selected based 
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on analysis of PPG signals acquired during jogging). For example, at the onset of 

jogging, R and IR PPG signals (Fig. 9.9) typically provided high-valued outlying IHR 

measurements due to the detection of multiple erroneous peak-to-peak intervals. The 

rejection of outlying IHR measurements contributed to more accurate HR readings, 

especially during the onset of jogging. Note that the rejection of high-valued IHR 

measurements extracted from the R signal occurred frequently at the beginning of 

jogging and ceased shortly thereafter. 

 
Figure 9.9. (A) Typical IR and (B) R PPG signals. ♦ indicate detected peaks and ○ 

indicate high outlying IHR measurements. 

 

Fig. 9.10 demonstrates the rejection of low outlying IHR measurements calculated 

from missed peaks in the IR signal. The peak-to-peak intervals in Fig. 9.10 were rejected 

since the algorithm detected low outlying IHR values associated with missed peaks. By 

removing low outlying IHR values, the HR calculation algorithm provided more accurate 
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HR readings during jogging. Missed intervals and the detection of multiple peaks were 

typical in all PPG signals acquired during jogging. 

 

 
Figure 9.10. (A) Typical IR and (B) R PPG signals. ♦ indicate detected peaks and * 

indicate low outlying IHR measurements due to missed peaks. 

 

Despite the implementation of several modifications to the SpO2 and HR algorithms, 

we found that measurement accuracy did not improve during jogging. This indicated that 

the effects of motion artifacts were not reduced by the modifications made to the 

algorithms. As described in the Limitations to Pulse Oximetry (Section 3.7), the PPG 

signals acquired during jogging are compromised by the frequency of motion. Since the 

modifications to the algorithms did not alter the spectral content of the signals, inaccurate 

measurements were extracted during jogging. 

Fig. 9.11 shows representative HR readings obtained during jogging. This figure 

demonstrates that the modifications made to the algorithm rejected some of the erroneous 

HR readings during jogging. The large fluctuations in HR readings obtained from the 
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finger-worn Masimo sensor did not respond adequately to the corresponding changes in 

physiology during jogging. 

0 50 100 150 200

100

150

200

250

Time (s)

H
R

 (
b
p
m

)

 
Figure 9.11. Representative HR measurements obtained during jogging. 

 

9.3. ADAPTIVE NOISE CANCELLATION 

 

During jogging, changes in the morphology of PPG signals cause a reduction in the 

accuracy of SpO2 and HR obtained by signal processing algorithms developed by 

Johnston [12]. To evaluate the effectiveness of the ACC-based ANC algorithm, body 

acceleration and PPG data were processed using ANC algorithms in Matlab. 

Representative body acceleration, raw PPG signals acquired during jogging, and 

adaptively filtered PPG signals are shown in Fig. 9.12. The adaptively filtered PPG 

signals (Fig. 9.12B, D) show that PPG peaks can be more easily identified as compared to 

the peaks raw signals (Fig. 9.12A, C). For example, several portions of the adaptively 
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filtered IR signal appear more like typical, clean PPG signals (Fig. 9.12B; t = 1.5s, 3.5s, 

5.5s, 8s). 
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Figure 9.12.  (A) Typical IR PPG signals before and (B) after processing by the ANC 

algorithm. (C) Typical R PPG signal before and (D) after processing by the ANC 

algorithm. (E) corresponds to the reference noise obtained simultaneously from the ACC 

during treadmill jogging (X+Y+Z).  

 

Fig. 9.13 shows representative FFT spectra of body acceleration and PPG signals 
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before and after processing by the ANC algorithm. The FFT signals shown in Fig 9.13 

correspond to the body acceleration and PPG signals depicted in Fig. 9.12. The spectral 

band centered at 2Hz corresponds to the cardiac frequency during jogging (Fig. 9.13A, 

B). The spectral band centered at 2.45Hz corresponds to the frequency of body 

acceleration. This figure also demonstrates that the frequency of motion can be 

significantly attenuated by the ACC-based ANC algorithm. Fig. 9.13C indicates that the 

movement occurred primarily in the vertical (X) plane of motion although body 

acceleration was also measured by the horizontal (Y) and anterior-posterior (Z) planes of 

the ACC. 
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Figure 9.13.  (A) FFT spectra of the IR PPG, (B) R PPG and (C) corresponding ACC 

signals during treadmill jogging. 

 

9.3.1. LMS STEP-SIZE SELECTION 

The LMS algorithm step-size, µ, was varied to determine its potential effect on the 

accuracy of SpO2 and HR measurements. The Matlab function mumax was utilized in 

order to determine the relative range of µ. The selection of µ by mumax was based on 

the statistics of the ACC and PPG data (µ was varied between 0.002 and 0.05). Fig. 9.14 

shows calculated mean SpO2 and HR RMSE ±1 standard deviation (SD) for all trials. A 
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32
nd

 order LMS filter was chosen for this study. 

This study was performed to determine a range of µ that could be used to implement 

an LMS algorithm. Generally, the results show that the SpO2 and HR measurements 

extracted from the adaptive filter algorithm have a lower RMSE and SD than the non-

adaptive algorithm (µ = 0). For SpO2, the results show that the reduction in RMSE 

occurred over the entire range of µ, although the reduction in SpO2 measurement error 

was relatively constant for µ > 0.35. Similarly, the RMSE for HR was reduced over the 

entire range of µ although RMSE increased for µ > 0.03. This suggests that an LMS 

algorithm with constant µ could be implemented to improve measurement accuracy 

during jogging. µ = 0.016 was selected for further analysis since this value obtained 

optimal reduction in RMSE and SD. 

 

9.3.2. RLS FORGETTING FACTOR SELECTION 

The RLS algorithm forgetting factor, λ, was varied to determine its potential effect on 

the accuracy of SpO2 and HR measurements. This study was performed to determine the 

feasibility of implementing an RLS algorithm with a constant λ. Since the literature 

suggested that λ is typically near 1 [53], the parameter was varied between 0.9 and 1. 

Fig. 9.15 and 9.16 show the average RMSE ±1 SD for SpO2 and HR for all trials. A 

16
th
 order RLS filter was chosen for this study. The results indicate that 0.98 < λ < 1 

provided the lowest RMSE and SD. This suggests that an RLS algorithm with constant λ 

could be implemented to improve measurement accuracy during jogging. λ = 0.99 was 

selected for further analyses since this value obtained optimal reduction in the RMSE. 
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Figure 9.14. (A) Average SpO2 and (B) HR RMSE for the LMS adaptive filter algorithm 

for varying µ (filter order M = 32). Error bars indicate ±1 SD. Data reflect 32 trials. µ = 

0 represents measurements extracted from the non-adapted PPG signals. 
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Figure 9.15. (A) Average SpO2 and (B) HR RMSE for 0.9 < λ < 1. RLS order M = 16. 

Error bars indicate ±1 SD. Data reflect 32 jogging trials. 
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Figure 9.16. (A) Average SpO2 and (B) HR RMSE for 0.98 < λ < 1. RLS order M = 16. 

Error bars indicate ±1 SD. Data reflect 32 jogging trials. 
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9.3.3. SELECTION OF FILTER ORDER 
The filter order, M, was varied to determine its potential effect on the accuracy of 

SpO2 and HR measurements obtained by LMS and RLS algorithms. This study was 

performed to compare the measurement accuracy obtained by the adaptive algorithms. 

Fig. 9.17 shows the average RMSE ±1 SD for varied M for all trials. LMS (µ = 0.016) 

and RLS (λ = 0.99) algorithms were chosen for this study. 

The results indicate that SpO2 and HR measurements extracted from the adaptive 

filter had a lower RMSE and SD than the non-adaptive algorithm (M = 0). For example, 

for SpO2, using a 24
th
 order filter, the LMS and RLS algorithms provided a mean percent 

reduction of the RMSE corresponding to 21.8% and 23.3%, respectively. Similarly, for 

HR, the LMS and RLS algorithms provided a mean percent reduction in RMSE 

corresponding to 58.9% and 35.5%, respectively. This indicates that LMS and RLS 

algorithms could provide a similar degree of improvement in measurement of SpO2 

although the LMS could provide a more significant improvement in measurement of HR. 
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Figure 9.17. (A) Average SpO2 and (B) HR RMSE obtained using the LMS (light) and 

RLS (dark) algorithms for filter order. The error bars indicate ±1 SD. The data reflect 32 

jogging trials. M = 0 represents measurements extracted from non-adapted PPG signals. 
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9.4. ANALYSIS METHODS 

 

Fig. 9.18 shows the mean difference between SpO2 and HR measurements obtained 

from the non-adaptive and LMS algorithms. The differences between the non-adaptive 

and measurements obtained from the RLS algorithm are shown in Fig. 9.19. The data 

indicate that the differences between the measurements extracted using the non-adaptive 

and adaptive algorithms varied significantly for each individual. The one-way analysis of 

variance (ANOVA) test was used to determine the statistical significance for the 

difference between the non-adaptive and adaptive algorithms. Due to the high variation in 

measurement differences among individuals, the ANOVA included a model to account 

for differences between individuals. 

The results of the ANOVA included the estimate error, standard error of the estimate 

(SEE), p value, and 95% confidence interval (CI95). To facilitate comparisons between 

the non-adaptive and adaptive methods, the error of the estimate represents the mean 

difference between measurements obtained by each method, the SEE value represents the 

standard deviation of the estimate, the p value indicates the level of significance of the 

test, and the CI95 indicates the range representing 95% of the differences between 

measurements. 
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Figure 9.18. (A) Percent differences between SpO2 and (B) HR extracted by the non-

adaptive and adaptive LMS algorithms. 
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Figure 9.19. (A) Percent differences between SpO2 and (B) HR extracted by the non-

adaptive and adaptive RLS algorithms. 
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Fig. 9.20 shows a flowchart of the data path used to obtain SpO2, HR, body 

orientation, and activity. Raw data were filtered in software using LPF and BPF routines. 

The AC and DC components of body acceleration signals were processed by Orientation 

and Activity algorithms, respectively. In addition to providing activity information, the 

summation of the AC components of the body acceleration signals was used as a noise 

reference input to the ANC algorithm. The AC component of the PPG signals was 

processed by the ANC algorithms in order to attenuate the motion spectrum from the 

corrupted signals. To obtain SpO2 readings, adaptively filtered AC components and raw 

DC components of PPG signals were processed by the SpO2 algorithm. Similarly, 

adaptively filtered AC components of PPG signals were processed by the HR algorithm 

to acquire HR readings. All processing was completed in Matlab. 
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Figure 9.20. Data path for ACC and PPG signals. 
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9.4.1. SpO2 DIFFERENTIAL THRESHOLD 

SpO2 measurements were extracted from PPG signals that were adaptively filtered by 

the LMS and RLS filters. Measurements were compared using the SpO2 algorithm 

described by Johnston [12] and the modified SpO2 algorithm implemented in this thesis. 

This analysis was performed to determine the level of significance of the difference in 

RMSE obtained from the SpO2 algorithms. The estimate error was calculated as the 

subtraction of the SpO2 measurement error obtained by the algorithm devised by 

Johnston from the error obtained by the algorithm that incorporated the SpO2 Differential 

Threshold modification. Table 9.1 shows the results of the one-way ANOVA. The results 

indicate that the algorithm devised by Johnston provided slightly more accurate 

measurements than the modified algorithm; the result obtained using the LMS algorithm 

was considered significant at the 0.05 level although the results obtained using the RLS 

algorithm was not considered significant (p = 0.128). 

Table 9.1. Mean percent differences in SpO2 extracted from the adaptively filtered PPG 

signals by using the SpO2 algorithm devised by Johnston [12] and the modified 

algorithm. 

 Mean Percent Difference in SpO2 (%) 95% Confidence Interval 

 Estimate SE p Lower Upper 

LMS (µµµµ = 0.016, M = 16) -0.41 0.156 0.015 -0.732 -0.088 

RLS (λλλλ = 0.99, M = 16) -0.254 0.161 0.128
*
 -0.585 0.078

†
 

* p value is not considered significant  
† 
confidence interval includes the zero estimate 

 

Fig. 9.21 shows an experimental trial during which the SpO2 measurements had a 

high degree of inaccuracy during jogging. In this example, the ACC-based ANC 

algorithm provided more accurate measurements than the non-adaptively filtered signals. 

The results show that the measurements obtained using the SpO2 Differential Threshold 

were less accurate than measurements extracted using the SpO2 algorithm devised by 

Johnston [12]. This suggests that the SpO2 Differential Threshold algorithm should not be 
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implemented for the calculation of SpO2 readings. 
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Fig. 9.21. SpO2 measurements obtained with and without ANC using the algorithm 

developed by Johnston [12] and the SpO2 Differential Threshold. 

 

Fig. 9.22 shows the AC and DC signals corresponding to the experimental trial shown 

in Fig. 9.21. This figure shows that relatively large changes occurred in the DC signals 

during jogging. Since DC signals were not processed by the ACC-based ANC algorithm, 

changes in PPG morphology due to the effects of motion were not removed from the 

signals. This suggests that signal components due to movement present in the DC signals 

contributed partially to the calculation of erroneous measurements. 
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Fig. 9.22. (A) ACR and ACIR and (B) DCR and DCIR signals obtained during jogging. 
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9.4.2. HR AVERAGING 

HR measurements were extracted from adaptively filtered PPG signals acquired 

during jogging. This study was performed to determine the effectiveness of the Time-

Based Averaging scheme for providing improved accuracy of HR measurements during 

jogging. Differences were calculated between HR measurements extracted by using the 

HR algorithm described by Johnston [12] and HR measurements extracted by Time-

Based Averaging. The error of the estimate is shown in Table 9.2. The results indicate 

that Time-Based Averaging provided more accurate HR measurements during jogging. 

The difference obtained by utilizing the LMS algorithm was considered significant at the 

0.05 level although the difference obtained from the RLS algorithm was not considered 

significant (p = 0.115). 

Table 9.2. Mean percent differences in HR extracted from the adaptively filtered PPG 

signals by using the HR algorithm devised by Johnston [12] and the modified averaging 

algorithm. 

 Mean Percent Difference in HR (%) 

95% Confidence 

Interval 

 Estimate SE p Lower Upper 

LMS (µµµµ = 0.016, M = 16) 3.951 0.469 < .0001 2.985 4.917 

RLS (λλλλ = 0.99, M = 16) 1.625 0.995 0.115
*
 -0.424 3.673

†
 

* p value is not considered significant  
† 
confidence interval includes the zero estimate 

 

 

9.4.3. EXTRACTION OF HR FROM R AND IR SIGNALS 

The HR algorithm developed by Johnston [12] utilized the IR PPG for the extraction 

of HR measurements. In order to calculate more accurate measurements, this algorithm 

was modified to incorporate peak identification of the R signal. A threshold was 

implemented to remove IHR values extracted from the IR signal that varied from IHR 

values extracted from the R signal, as well as the contrary case. Using adaptively filtered 

PPG signals, estimate errors were obtained from the algorithm developed by Johnston 
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and the modified algorithm (Table 9.3). Results indicate that this modification to the 

algorithm provided improved HR accuracy; improvements were considered significant 

for the measurements obtained from both the LMS and RLS algorithms (p < 0.0001). 

Table 9.3. Mean percent differences in HR extracted from the adaptively filtered PPG 

signals by using the HR algorithm developed by Johnston [12] and the algorithm 

modified to incorporate R and IR IHR values. 

 Mean Percent Difference in HR 

95% Confidence 

Interval 

 Estimate SE p Lower Upper 

LMS (µµµµ = 0.016, M = 16) 10.745 1.768 < .0001 7.104 14.387 

RLS (λλλλ = 0.99, M = 16) 34.138 3.232 < .0001 27.483 40.793 

 

9.4.4. IHR THRESHOLD 

The IHR Threshold modification consisted of the removal of IHR values that deviated 

significantly from the average HR reading. Deviations were considered significant if an 

IHR measurement was greater than 175% or less than 50% of the present average HR 

reading. This range was found to be effective for the data analyzed for this thesis. 

The algorithm developed by Johnston [12] and the IHR Threshold were compared by 

differences in estimate error (Table 9.4). Results indicate that this modification provided 

improvements in HR measurement accuracy; improvements were considered significant 

for the measurements obtained from both the LMS and RLS algorithms (p < 0.0001). 

Table 9.4. Mean percent differences in HR extracted from the adaptively filtered PPG 

signals by using the HR algorithm designed by Johnston [12] and the algorithm modified 

to incorporate R and IR IHR values as well as the IHR threshold function. 

 Mean Percent Difference in HR 

95% Confidence 

Interval 

 Estimate SE p Lower Upper 

LMS (µµµµ = 0.016, M = 16) 20.518 2.826 < .0001 14.697 26.338 

RLS (λλλλ = 0.99, M = 16) 63.166 5.362 < .0001 52.122 74.209 

 

Fig. 9.23 shows the effectiveness of the IHR Threshold algorithm to reject erroneous, 

high valued IHR values extracted from PPG signals, particularly during the onset of 
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jogging. Similarly, the IHR Threshold algorithm rejected several high valued IHR values 

extracted from adaptively filtered PPG signals (Fig. 9.23B). This result indicates that this 

modification to the algorithm devised by Johnston [12] is effective in providing more 

accurate HR readings from adaptively filtered signals. 

 

 
Fig. 9.23. (A) ACIR obtained during jogging without ANC and (B) with ANC algorithm.  

♦ indicate detected peaks. ○ indicate high outlying IHR measurements. 

 

Fig. 9.24 shows PPG signals obtained before and after processing using an ANC 

algorithm. As was demonstrated by Fig. 9.12, this figure also shows that the adaptively 

filtered signals provided more noticeable peaks for peak identification. As described 

previously, respiration during jogging caused missed peak identification in PPG signals. 

Fig. 9.24 demonstrates that more consistent peak identification resulted in fewer missed 

peaks. Although fewer PPG peaks were missed in adaptively filtered signals, it is shown 

that the IHR Threshold was effective in rejecting missed peaks that occurred during some 

periods of jogging. Therefore, the IHR Threshold was effective in removing low outlying 

Resting Jogging 

Resting Jogging 
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IHR values from adaptively filtered signals.  

 

 
Fig. 9.24. (A) ACIR obtained during jogging without ANC and (B) with the ANC 

algorithm. ♦ indicate detected peaks and * indicate low outlying IHR measurements. 

 

Fig. 9.25 shows a representative adaptively filtered PPG during jogging. Although it 

was shown that the ACC-based ANC algorithm is effective in attenuating the frequency 

of motion in PPG signals (Fig. 9.13), the effects of motion artifacts are still present to a 

certain degree. This figure indicates that the rejection of both low and high outlying IHR 

values was typical for adaptively filtered PPG signals acquired during jogging. Therefore, 

the IHR Threshold modification was effective in improving HR measurements extracted 

from adaptively filtered PPG signals acquired during jogging. 
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Fig. 9.25. ACIR obtained during jogging with the ANC algorithm. ♦ indicate detected 

peaks. ○ and * indicate high and low outlying IHR measurements, respectively. 

 

Fig. 9.26 shows HR readings obtained using the algorithm devised by Johnston [12] 

with readings obtained using the algorithm developed for this thesis. This plot shows that 

the modified HR algorithm incorporating ACC-based ANC provided the most accurate 

readings. Note that processing the signals obtained by using the ACC-based ANC 

algorithm in conjunction with the routine devised by Johnston [12] did not provide 

accurate readings during jogging. 

Jogging 



www.manaraa.com

 81 

0 20 40 60 80 100

100

150

200

250

Time (s)

H
R

 (
b
p
m

)

 
Fig. 9.26. HR measurements obtained with and without ANC using the algorithm 

developed by Johnston [12] and the modified HR algorithm. 

 

9.5. ACCELEROMETER AXIS SELECTION 

 

SpO2 and HR were extracted from signals that were processed by an LMS algorithm 

using body acceleration signals. This study was performed to determine the potential 

effect of ACC axis selection on measurement accuracy. Measurements extracted from the 

adapted PPG signals during preliminary experimentation are summarized in Table 9.5. 

The data show that improvements in SpO2 and HR were obtained by utilizing each 

acceleration axis separately as well as the summed combination of the accelerometer axes 

(X+Y+Z). The data given in Table 9.5 correspond to the mean result obtained during five 

trials performed by one individual. 

Additionally, the data indicate that HR readings obtained from the Masimo SET
®
 

were not consistent with the readings acquired from the Polar™ monitor (Table 9.5). This 
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inconsistency suggests that the Masimo SET
®
 would not be reliable for obtaining 

accurate readings during jogging. 

Table 9.5. Percent SpO2 and HR differences (RMSE ± SD) during jogging (N = 300). 

Masimo SET® Polar™ 

 SpO2 HR HR 

Not Corrected 2.5 ± 1.5 59.7 ± 22.7 6.6 ± 3.6 

ANC (X) 1.9 ± 1.2 54.4 ± 19.4 1.8 ± 1.4 

ANC (Y) 2.3 ± 1.4 57.5 ± 22.2 5.2 ± 3.5 

ANC (Z) 2.3 ± 1.5 56.8 ± 20.9 4.0 ± 2.8 

ANC (X+Y+Z) 2.0 ± 1.3 58.0 ± 21.8 2.7 ± 1.7 

 

The results summarized in Table 9.6 show that for all data and an X-axis noise 

reference input signal, the mean difference in SpO2 and HR measurements between the 

non-adaptive and adaptive LMS algorithms is equal to -2.02% and -8.47%, respectively 

(p < 0.05). Similar results were obtained for the tri-axial (X+Y+Z) reference signal; the 

mean differences in SpO2 and HR measurements were equal to -1.75% and -8.40%, 

respectively (p < 0.05). These results indicate that using the X-axis and X+Y+Z axis 

signals as noise reference inputs provided significant improvement in measurement 

accuracy during jogging. 

 

 

 

 

 

 

 



www.manaraa.com

 83 

Table 9.6. Mean percent differences in SpO2 (top) and HR (bottom) measurements 

extracted from the adaptive LMS algorithm for each noise reference input signal.  

 Mean Percent Difference in SpO2 95% Confidence Interval 

 Estimate SE p Lower Upper 

X -2.02 0.73 0.01 -3.52 -0.52 

Y -0.45 0.16 0.01 -0.78 -0.12 

Z -1.09 0.51 0.04 -2.14 -0.04 

X+Y+Z -1.75 0.63 0.01 -3.05 -0.44 

 

 Mean Percent Difference in HR 95% Confidence Interval 

 Estimate SE p Lower Upper 

X -8.47 0.97 < .0001 -10.47 -6.46 

Y -1.80 0.30 < .0001 -2.42 -1.18 

Z -5.20 0.78 < .0001 -6.80 -3.59 

X+Y+Z -8.40 0.60 < .0001 -9.64 -7.15 

 

Similar to the results shown for the LMS algorithm, Table 9.7 demonstrate that the 

RLS algorithm provided improvements in the accuracy of SpO2 and HR measurements. 

The mean differences in SpO2 and HR measurements between the non-adaptive and 

adaptive RLS algorithms were -1.94% and -5.79%, respectively. The improvement in 

SpO2 measurement obtained using the RLS algorithm is comparable to the improvement 

obtained using the LMS algorithm. In contrast, the improvements in HR obtained from 

the LMS algorithm are more significant than those obtained using the RLS algorithm. 

Table 9.7. Mean percent differences in SpO2 (top) and HR (bottom) measurements 

extracted from the RLS adaptive algorithm utilizing the X+Y+Z noise reference input. 

 Mean Percent Difference in SpO2 95% Confidence Interval 

 Estimate SE p Lower Upper 

X+Y+Z -1.94 0.73 0.01 -3.45 -0.43 

 

 Mean Percent Difference in HR 95% Confidence Interval 

 Estimate SE p Lower Upper 

X+Y+Z -5.79 1.24 <.0001 -8.35 -3.24 
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9.6. TIME DIFFERENCES  IN BODY ACCELERATION AND PPG SIGNALS 

 

Results shown by Asada et al suggested that a significant time delay exists between 

body acceleration and PPG signals acquired from a finger-worn PPG sensor during 

treadmill jogging [59]. Since the degree of time delay between body acceleration and 

PPG signals acquired from the forehead has not been shown, an experiment was 

performed to determine the potential degree of time delay. The effects that implementing 

a time delay had on measurements were found in order to evaluate the clinical 

significance of the delay. 

Representative data from one jogging trial given in Figure 9.27 show that the degree 

of correlation between ACC and PPG signals depended on the time delay. Therefore, 

RMSE and SD were determined over a range of time delays (Fig. 9.28). These results 

indicate that the effect of time delay on measurement error is not considered clinically 

significant. 
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Figure 9.27. Degree of correlation between ACC and PPG signals for time delays. 

 

Figure 9.28. Measurement errors for time delays. SpO2 and HR errors indicated by + 

and ♦, respectively. 
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9.7. SPECTRAL OVERLAP 
 

MATLAB SIMULATION 

Body acceleration and PPG signals were simulated in Matlab using sinusoidal waveforms 

that shared a common frequency band (i.e. fPPG = 2Hz, fACC = 2.1Hz). Fig. 9.29 and Fig. 

9.30 show frequency spectra of simulated ACC and PPG signals. In these examples, 

jogging was simulated during which the frequency of activity coincided to varying 

degrees with the cardiac frequency. Generally, the results showed that the ANC algorithm 

did not remove the cardiac frequency from the simulated PPG signal unless the spectral 

overlap between body acceleration and the cardiac rate was within 0.1Hz (Fig. 9.29). 

1.9 2 2.1 2.2 2.3 2.4 2.5
0

2

4

 

 

 

1.9 2 2.1 2.2 2.3 2.4 2.5
0

2

4

Frequency (Hz)

 

 

 
Figure 9.29. (A) Frequency spectra of simulated PPG and (B) ACC signals consisting of 

separate frequency bands. All data generated in Matlab. 
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Figure 9.30. (A) Frequency spectra of simulated PPG and (B) ACC signals consisting of 

overlapping frequency bands. All data generated in Matlab. 

 

Spectral Overlap during Jogging Trials  

Experimental trials were analyzed during which the cardiac and frequency spectral 

components overlapped. These data were analyzed separately since these trials provided 

signals with significant overlap of the body acceleration and cardiac frequencies. Since 

some researchers suggested that spectral overlap could reduce the effectiveness of an 

ACC-based ANC algorithm [60], the RMSE and SD were obtained from the trials 

consisting of spectral overlap. 

The spectral overlap data consisted of eight indoor and treadmill jogging trials (two 

participants). Fig. 9.31 shows representative frequency spectra of jogging PPG and ACC 

signals consisting of spectral overlap. This demonstrates that the ACC-based ANC 

algorithm attenuates to a certain degree the frequency of body acceleration contained in 

the PPG signals. This result indicates that the cardiac spectral band is not completely 
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attenuated by the ANC algorithm. 

Fig. 9.32 shows SpO2 and HR measurements extracted from PPG signals processed 

by the LMS and RLS algorithms. We noticed that measurement accuracy obtained from 

PPG signals acquired during spectral overlap was similar to accuracy obtained by 

processing without the ANC algorithm (M = 0). Additionally, the SpO2 and HR 

measurement error is relatively low compared to measurements extracted from signals 

that did not consist of spectral overlap (Fig. 9.17). This suggests that spectral overlap will 

not cause reduction in SpO2 and HR measurement accuracy obtained from PPG signals 

processed by an ACC-based ANC algorithm. 
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Figure 9.31. (A) FFT spectra of IR, (B) R and (C) ACC signals consisting of spectral 

overlap during jogging. 
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Figure 9.32. (A) Average SpO2 and (B) HR RMSE obtained using the LMS (light) and 

RLS (dark) algorithms for varied filter order. The error bars indicate ±1 SD. The data 

reflect 8 jogging trials during which there was partial cardiac and motion spectral 

overlap. M = 0 represents measurements extracted from non-adapted PPG signals. 
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9.8. REAL-TIME ADAPTIVE NOISE CANCELLATION 

 

Since the focus of this thesis is real-time physiological monitoring, a study was 

performed to determine the feasibility of implementing ACC-based ANC software 

algorithms within the embedded TI-MSP430 µC. Custom-written LMS and RLS 

algorithms were implemented within the embedded TI-MSP430 µC. To determine the 

effect of filter order on the execution time of the algorithms, the ACC-based ANC 

software was implemented in the TI-MSP430 over a range of filter orders. Fig. 9.32 

shows the corresponding execution times of the TI-MSP430. 

Briefly, Fig. 9.33 shows that the execution time of the adaptive algorithms increase 

with filter order. The execution time of the LMS increases at a relatively slow rate 

compared to that of the RLS algorithm. Three difference clock speeds are shown (80kHz, 

1MHz, 8MHz). These times represent low, medium, and high ranges of the clock within 

the TI-MSP430 µC. 
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Figure 9.33. (A) Execution times of the LMS and (B) RLS algorithms in the TI-MSP430 

embedded µC. 
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10. DISCUSSION 

 

The results from the stationary cycling experiments showed that increased breathing 

rate did not contribute to measurement inaccuracies during exercise. This suggested that 

the effects of motion artifacts were caused by body movements rather than physiological 

changes associated with jogging. Results from in vivo jogging experiments confirmed 

that an ACC-based ANC algorithm could reduce considerably the RMSE of HR readings 

although the reduction in RMSE of SpO2 readings was less significant. Since these 

studies were limited to 32 jogging trials, additional investigation will be required to 

determine the feasibility to extract more accurate readings from PPG signals acquired 

during activity in the field. Further, an assessment of the RAM and processing 

requirements associated with ACC-based ANC algorithms suggested that it would be 

feasible to implement ACC-based ANC software within the embedded TI-MSP430 µC. 

 

10.1. PRELIMINARY EXPERIMENTS 

 

Experiments showed that the morphology of PPG signals obtained during stationary 

cycling and resting were similar (Fig. 9.1). The primary difference was the amplitude of 

the PPG signals. Despite this change in amplitude, PPG signals obtained during resting 

and bicycling appeared very similar in terms of the ability to identify the primary features 

in the signals. 

The spectral content of PPG signals obtained during stationary bicycling was 

composed primarily of the cardiac spectral band and its harmonics (Fig. 9.2). In contrast 

to Figure 3.7, the PPG signals obtained during cycling only contained a spectral band at 

the cardiac frequency. This is likely due to the decreased motion associated with cycling. 
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Therefore, the differences in PPG amplitude were most likely attributed to changes in 

physiology that occurred during cycling, such as increased breathing rate. This suggests 

that accurate SpO2 and HR readings could potentially be acquired from PPG signals 

during stationary cycling. 

Additionally, we noticed that the frequency spectra of the ACC signals acquired 

during bicycling (Fig. 9.2C) consisted of a lower SNR than the ACC signals acquired 

during jogging (Fig. 9.13C). This indicated that the degree of body acceleration that 

occurred during stationary cycling was significantly smaller compared to treadmill 

jogging, consistent with decreased motion in cycling. Therefore, the PPG signals 

associated with cycling were not affected by motion artifacts but rather by changes in 

physiology, whereas PPG signals associated with treadmill jogging were affected by 

changes in physiology as well as motion artifacts.  

 

10.2. ALGORITHM MODIFICATIONS 

 

10.2.1. EXTRACTION OF SpO2 MEASUREMENTS 
SpO2 measurements obtained from the algorithm developed by Johnston [12] were 

slightly higher than the Masimo reference SpO2 during jogging (Fig. 9.5A). Accordingly, 

the SpO2 Differential Threshold algorithm was designed to remove derivatives that did 

not meet the calculated threshold value in order to produce more accurate SpO2 readings. 

The removal of low value signal derivatives by the modified algorithm helped to improve 

the accuracy during jogging. 

The algorithm devised by Johnston [12] and the SpO2 Differential Threshold 

algorithm produced SpO2 readings that increased steadily during the onset of jogging 

(45s < t < 60s). Although there was a slight time lag, the Masimo reference produced a 
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similar result (70s < t < 85s). Also, the readings obtained using the Masimo reference 

source and the custom algorithms showed similarly stable trends for 80s < t < 120s. 

These similarities suggest that the readings obtained were partly due to physiological 

effects. For instance, the increased SpO2 values during the onset of jogging could have 

been a result of physiological changes associated with increased breathing. 

The SpO2 Differential Threshold algorithm and the algorithm devised by Johnston 

[12] detected hypoxic drops in SpO2 during breath-holding (100s < t < 116s). Although 

the Masimo sensor was held still during hypoxia, the SpO2 readings did not respond to 

the same extent as the readings from the custom pulse oximeter. While this could be due 

to differences in physiology between the forehead and fingers, this indicates that the 

algorithms incorporated into the custom pulse oximeter were effective in measuring 

significant changes in SpO2 during jogging. 

Generally, during subsequent data collection, SpO2 measurements decreased 

considerably during free, non-treadmill jogging (Fig. 9.5B). Although this differed from 

the results shown in Fig. 9.5A, this result was not surprising since SpO2 readings 

typically approach 85% due to pronounced movement artifacts. During persistent motion 

artifacts, R and IR PPG signals are obtained with similar amplitudes. This produces an R 

value near 1 which in turn yields SpO2 readings near 85% [20]. Since the SpO2 

Differential Threshold algorithm produced lower SpO2 measurements during jogging, 

this modification provided less accurate measurements. Therefore, the SpO2 Differential 

Threshold algorithm was not incorporated into the calculation of SpO2 for measurements 

obtained from the ACC-based ANC algorithms. 

It should be noted that the SpO2 readings obtained from the finger-worn Masimo 
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sensor did not approach 85% during jogging. Since the Masimo sensor was worn on a 

finger that remained still during jogging, this suggests that the drop in SpO2 was due to 

the effects of motion artifacts rather than changes in blood oxygenation. Also, we noticed 

differences in the SpO2 readings (> 4%) obtained from the custom and the reference 

pulse oximeters during the resting portions of Fig. 9.5B. We believe that this was due to 

differences in SpO2 calibration. 

In addition, we think that the relatively large drop in SpO2 at the beginning of jogging 

(88s < t < 112s) in Fig. 9.5B could be due to movement artifacts during jogging. We 

believe that this drop was not due to physiology since the subject was breathing 

throughout the jogging exercise. Generally, although the SpO2 readings in Fig. 9.5B were 

not equal to 85% throughout the jogging period, these variations were not likely due to 

changes in blood oxygenation level. Since these readings were extracted during intense 

activity, we believe that the trends in SpO2 readings can be attributed to the effects of 

motion artifacts. Also, Fig. 9.5B illustrates that the Masimo reference SpO2 was relatively 

stable during the beginning of jogging. As shown in Fig. 9.22, these types of drops in 

SpO2 could be attributed to large changes in the DC component of PPG signals. 

 

10.2.2. EXTRACTION OF HR MEASUREMENTS 

 

Time-Based Averaging 

In general, the HR measurements extracted using the Time-Based Averaging approach 

provided more accurate readings since the Polar HR readings were also calculated using 

an averaging routine based on a constant length window. HR measurements acquired 

during rest using the Peak Count-Based Averaging algorithm devised by Johnston [12] 

provided less accurate readings compared to the Time-Based Averaging algorithm for an 
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average HR of 95bpm (Fig. 9.6). The less accurate readings obtained for higher average 

HR values in the Peak Count-Based Averaging algorithm likely result from a shorter 

averaging time, since it incorporated 10 beats. Table 10.1 summarizes the changes in the 

time averaging window for elevated HR values. This demonstrates that the amount of 

time represented by the HR reading can vary considerably even during resting conditions. 

The time represented by the Peak Count-Based Averaging algorithm varies much more 

during activity since, for example, HR can reach levels as high as 240bpm, representing a 

2.5s window. 

From a clinical perspective, the Time-Based Averaging approach would be more 

appropriate than a routine based on the number of peaks since the amount of time 

corresponding to readings extracted using an averaging method with a constant averaging 

length would provide more consistent results. Typically, commercially available pulse 

oximeters provide different averaging settings [28]. This provides a range of response 

times that can be utilized during patient monitoring. Since a constant response time is 

desired in these applications, we suggest that the Time-Based Averaging algorithm should 

be utilized for the calculation of HR values. 

Table 10.1. HR averaging time for the Peak Count-Based Averaging algorithm during 

rest. 

Resting HR (bpm) Peak Count-Based Averaging (s) 

50 12.0 

60 10.0 

70 8.6 

80 7.5 

90 6.7 

100 6.0 

110 5.5 

120 5.0 
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Extraction of HR from R and IR PPG Signals 

As described in Section 9.2.2, the Extraction of HR from R and IR PPG Signals 

modification made to the HR algorithm did not incorporate outlying IHR values into the 

calculation of HR. IHR values were extracted separately from R and IR PPG signals. 

Values that differed significantly (greater than 200% or less than 50%) were considered 

outliers and were removed from the calculation of the HR reading. As shown in Fig. 9.8, 

the IHR values rejected during jogging included the low outlying values extracted from 

the IR signal as well as values extracted from the R signal. In this example, the values 

extracted from the IR signal deviated significantly from the mean HR reading whereas 

the values extracted from the R signal were comparable to the mean HR reading. This 

shows that accurate IHR measurements derived from the R signal were identified as 

erroneous and discarded (false negatives) from the calculation. Therefore, to reduce the 

amount of false negatives removed from the HR reading, the IHR Threshold modification 

was implemented. 

It was shown that the signal derivatives associated with the R signal provided more 

consistent peak detection during jogging since the morphology of the R signal was 

generally less affected by amplitude changes due to respiration than the IR signal. 

Despite more consistent peak identification in the R signal, we found that the Extraction 

of HR from R and IR PPG Signals routine did not completely reduce the effects of motion 

artifacts during jogging. The frequency band associated with motion dominated the 

spectral content of the PPG signals during jogging (Fig. 3.7). Since this algorithm did not 

reduce the spectral content due to motion, this algorithm modification did not sufficiently 

minimize the underlying effects contributed by motion artifacts. 

The range of values used to reject IHR measurements from the calculation of HR was 
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selected in order to remove IHR values due to extraneous peak detection and missed 

peaks. For the sample studies performed in this thesis, the range used to reject IHR values 

(greater than 200% or less than 50%) was appropriate for measurements acquired during 

jogging. 

 

IHR Threshold 

The IHR Threshold routine was effective in removing erroneous high and low IHR values 

from the calculation of HR averages. The rejection of erroneously high IHR values (Fig. 

9.9) provided more accurate HR measurements during jogging since erroneous multiple 

peaks were detected and removed by the algorithm. Similar to the range used by the 

Extraction of HR from R and IR PPG Signals algorithm, this algorithm modification 

utilized a range (greater than 175% or less than 50%) to reject IHR measurements from 

the HR calculation. This particular range was selected in order to remove IHR values due 

to extraneous peak detection and missed peaks since it was appropriate for measurements 

acquired during jogging. Likewise, the rejection of erroneously low IHR values (Fig. 

9.10) provided more accurate HR measurements during jogging since heavy respiration 

associated with jogging resulted in missed peaks. A potential short-coming of this study 

was that an additional test was not performed to determine the feasibility of modifying 

the range to reject erroneous high and low IHR readings in order to improve the 

sensitivity and specificity of the algorithm. Future studies should be performed to 

evaluate the range used to reject high and low IHR readings during jogging. 

Fig. 9.11 showed that despite several modifications to the HR algorithm, HR 

measurements remained inaccurate during jogging. Specifically, this figure indicated that 

the HR readings obtained with the modified algorithm were consistently greater than the 
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Polar
®
 reference measurements. Analysis showed that these HR readings were higher 

since the motion spectral component in the PPG signal was at a higher frequency than the 

cardiac spectral component (Fig. 3.7). This confirms that an advanced signal processing 

solution to attenuate the motion spectral band is required to reduce the effects of motion 

artifacts.  

 

10.3. ADAPTIVE NOISE CANCELLATION 

 

PPG Signal Morphology 

Raw IR and R PPG signals acquired during jogging, as shown in Fig. 9.12, had an 

inconsistent morphology due to the effects of motion artifacts. For example, inspection of 

the raw IR signal (Fig. 9.12A) showed that it was difficult to discern true portions of the 

PPG signal from portions that were consequences of the induced motion artifacts. 

Conversely, the morphology of the adaptively filtered IR signal (Fig. 9.12B) appeared to 

have more consistently shaped peaks. Similarly, the morphology of the R signal was 

changed significantly after being processed by the ANC filter. Qualitatively, Fig. 9.12 

showed that the noisy portions of the IR signal (Fig. 9.12A) appeared to be corrected such 

that peaks were identified more easily in the adaptively filtered signal (Fig. 9.12B). This 

is illustrated in Fig. 10.1. Also, the morphology of the adaptively filtered R signal was 

comparable to the corrected IR signal, although we noticed that the peaks were generally 

sharper in the corrected IR signal. 



www.manaraa.com

 101 

0 1 2 3 4 5 6 7 8
0

0.5

1

 

0 1 2 3 4 5 6 7 8
0

0.5

1

Time (s)
 

Figure 10.1. IR PPG signals during jogging. (A) Noisy IR signals before applying ANC. 

(B) Adaptively filtered IR signals. * indicate automatic software-detected peaks. 

 

Frequency spectra of PPG signals obtained during jogging, as depicted in Fig. 9.13, 

revealed that PPG signals acquired during jogging were dominated by frequencies 

corresponding with body acceleration. Hence, the contribution of body acceleration to the 

spectral content of the PPG signal was the primary cause for reduced measurement 

accuracy during jogging. Fig. 9.13 also showed that the ACC-based ANC algorithm was 

effective in removing the frequency associated with body acceleration, which increased 

the SNR of the PPG signals obtained during jogging. The ANC algorithm functioned 

effectively as a band-rejection filter and attenuated the frequency spectrum corresponding 

to body acceleration. It should be kept in mind that since the frequency band of body 

acceleration was not known a priori, an ordinary band-reject filter with a fixed rejection 

band would not have been as effective in attenuating the spectral content due to body 
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acceleration. 

As discussed in Section 9.1., despite the modifications made to the SpO2 and HR 

extraction algorithms developed by Johnston [12], no considerable improvements were 

found in measurement accuracy during jogging. Therefore, an ACC-based ANC 

algorithm was studied since other researchers have suggested that this method could 

potentially improve measurement accuracy during jogging [16, 42, 47-51]. 

To address the feasibility of improving the performance of the custom pulse oximeter 

during jogging, the effectiveness of ACC-based ANC algorithms was investigated. The 

ACC-based ANC approach was effective in removing the frequency of motion from the 

corrupted PPG signals (Fig. 9.13). This result demonstrated that body acceleration 

signals, which were obtained from the forehead-worn SM by the integrated ACC, were 

an effective noise reference input signal to the ANC algorithm. Although some authors 

have presented similar work, this finding was significant since previous research focused 

on finger-worn PPG sensors [42, 47] which are known to be more prone to motion 

artifacts [20]. 

As described in Section 9.2, the parameters of the LMS and RLS algorithms were 

varied to determine the effect of these values on measurement accuracy during jogging. 

Studies were conducted to determine optimal values of µ, M, for the LMS algorithm and 

λ and M for the RLS algorithm. 

 

10.3.1. LMS: STEP-SIZE SELECTION 

It is known from the literature that a small valued step-size, µ, is desirable since this 

provides an LMS filter with relatively low adjustment error [53]. Larger µ values are 

known to increase the learning rate of the adaptive filter at the expense of increased 
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adjustment error. Faster adaptation speed could be more desirable for certain applications 

that do not require low measurement errors [53]. Utilizing an adaptive filter for real-time 

physiological monitoring would require relatively low adjustment error such that accurate 

measurements could be obtained [53]. 

Generally, the findings of this thesis agreed with the literature regarding the selection 

of a range of relatively small µ values for the implementation of the LMS algorithm [53]. 

Results for HR calculations showed that 0.01 < µ < 0.028 provided the lowest RMSE and 

SD values during jogging (Fig. 9.14). In addition, the RMSE and SD associated with HR 

measurements tend to increase for µ > 0.032. Conversely, the RMSE and SD of SpO2 

measurements did not vary significantly as a function of µ, but the minimum RMSE for 

SpO2 measurements were obtained for 0.032 < µ < 0.046. 

HR measurements were generally more affected by changes in µ since subtle 

variations in PPG morphology affected peak identification. Conversely, SpO2 readings 

were less affected by changes in µ since readings were calculated based on a 1s average 

window. Therefore, measurements were extracted using LMS filters with the optimal 

value found for HR readings (µ = 0.016). 

Although the effects of µ on SpO2 and HR errors had not been discussed previously 

in the literature, some authors reported using µ values comparable to the range reported 

in this thesis [53]. For real-time implementation of an LMS algorithm, it would not be 

feasible to vary the µ associated with the adaptive filter based on the ACC and PPG 

signals since these data would not be known a priori. Typically, µ would be set offline in 

software during the initial implementation of the algorithm. Since the results showed that 

HR accuracy was mostly affected by µ, the range of values determined in this study (0.01 
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< µ < 0.028) would be most appropriate for the implementation of an LMS algorithm. 

Furthermore, since the studies conducted in this thesis were limited to jogging 

experiments, the potential effects of µ on the accuracy of SpO2 and HR measurements 

were not determined for other types of activities. 

 

10.3.2. RLS: FORGETTING FACTOR SELECTION 

It is known that the value of λ affects the “memory” of the RLS algorithm (i.e. the 

degree to which past data is present in the algorithm) [53]. Specifically, 0.9999 < λ < 1 

has been typically utilized for RLS algorithms [53]. Some authors have suggested that 

RLS algorithms using λ within this range could be effective in reducing the effects of 

motion artifacts in PPG signals during movement [57]. 

The effect of λ on SpO2 and HR errors was presented in section 9.2.2. It was found 

that λ = 0.99 provided optimal RMSE during jogging. HR measurements extracted from 

PPG signals adaptively filtered using 0.99 < λ < 0.998 provided the lowest mean RMSE 

and SD. Similarly, the RMSE and SD of SpO2 measurements were minimized for 0.94 < 

λ < 0.99. In addition, it was found that the RMSE of SpO2 increased for λ > 0.99, as 

depicted in Fig. 8.12 and 8.13. Therefore, SpO2 and HR measurements were extracted 

from RLS filters with λ = 0.99. 

Although some authors have suggested different values of λ for ANC algorithms 

[57], an analysis of how λ affects SpO2 and HR measurement accuracy has not been 

shown previously in the literature. Real-time implementation of an RLS algorithm would 

require a constant λ to be set in software during initial implementation of the algorithm 

since ACC and PPG data would not be known a priori. Based on the results found in this 
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thesis, we concluded that λ = 0.99 would be the most appropriate value for the 

implementation of an RLS algorithm in real-time. 

 

10.3.3 SELECTION OF FILTER ORDER 

The filter order, M, of an adaptive filter algorithm affects the required computational 

time as well as measurement errors. LMS and RLS adaptive algorithms were studied 

since the software needed to implement these functions consists of relatively simple 

discrete-time equations [53-56]. In addition, due to the relatively simple implementation, 

these algorithms appeared extensively in the literature [16, 42, 47-51]. 

To study the potential effects of M on SpO2 and HR accuracy, M was varied using a 

constant µ = 0.016 and λ = 0.99 parameter in the LMS and RLS algorithms, respectively. 

SpO2 and HR accuracy correlated with the order of the adaptive filter. As shown in Fig. 

9.17, improvements in RMSE and SD appeared to settle for M = 16. These data also 

showed that the LMS and RLS filters obtained similar reduction in RMSE as a function 

of M. 

We found that RMSE and SD were reduced for higher order adaptive filters (Fig. 

9.17). This was an expected result since it was shown in the literature that adjustment 

error decreases for higher order filters [53]. Also, some authors have suggested that filters 

with M = 10 [59] and M = 20 [49] could potentially reduce the effects of motion artifacts 

which is in agreement with the findings of this thesis. Our data indicated that more 

significant improvement in measurement accuracy can be obtained for increased filter 

order (i.e. M = 24). 

Asada et al [59] and Foo et al [49] have suggested that an ANC algorithm could 

provide significant reduction in the effects of motion artifacts during treadmill jogging. 
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Generally, the results presented in this thesis agree with results reported by these 

researchers. The data shown in Fig. 9.17 demonstrate that the LMS and RLS algorithms 

provided significant reduction in the RMSE and SD of SpO2 and HR measurements 

during jogging. Although the improvement in SpO2 accuracy (Fig. 9.17A) was similar for 

the LMS and RLS algorithms, HR accuracy obtained using the LMS was more significant 

than that obtained using the RLS algorithm (Fig. 9.17B). 

Our results indicate that significant reduction in RMSE can be obtained by utilizing 

an ACC-based ANC algorithm for a forehead-worn PPG sensor. This result was similar 

to findings by Asada et al [59] and Foo et al [49], although they used finger-worn 

sensors. This suggests that the assumptions of the ACC-based ANC algorithm regarding 

body acceleration signals used as a reference to detect motion local to the finger-worn 

PPG sensor is also appropriate for forehead-worn sensors. 

 

10.4. ANALYSIS METHODS 

 

Mean percent differences were obtained between measurements derived using the 

ANC algorithms and reference measurements. The results showed that there was a large 

degree of variation in mean percent differences among participants, as shown in Figs. 

9.18 and 9.19. Therefore, an ANOVA was used with a model to account for the 

differences among participants. 

As shown in Section 9.1, the SpO2 and HR algorithms devised by Johnston [12] were 

modified in order to obtain more accurate measurements during jogging. For comparison, 

PPG signals adaptively filtered by the LMS and RLS algorithms using ACC signals as 

noise reference were processed by the algorithms developed by Johnston as well as the 
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modified algorithms. The one-way ANOVA was used to determine the significance of 

the differences between these measurements. 

 

10.4.1. SpO2 DIFFERENTIAL THRESHOLD 

The SpO2 Differential Threshold algorithm was implemented to determine whether 

the rejection of certain SpO2 derivatives would provide more accurate readings from 

adaptively filtered PPG signals. However, the mean percent differences of -0.41 and -

0.25 obtained by the LMS and RLS algorithms, respectively, indicated that this 

modification provided less accurate readings. Since the CI95 of the difference between the 

RLS and the reference measurements contained 0, a difference of 0 would be an expected 

result. This indicates that there is potentially no statistically significant difference 

between the measurements obtained from RLS-adaptively filtered signals using the SpO2 

algorithm developed by Johnston [12] and the SpO2 Differential Threshold algorithm 

developed in this thesis. 

As shown in Section 9.1.1 and discussed in Section 10.1.1, the SpO2 Differential 

Threshold algorithm obtained lower SpO2 values from PPG signals acquired during 

jogging (Fig. 9.5). For non-adaptively filtered PPG signals, this modification generally 

provided less accurate measurements during jogging. In comparison, the ACC-based 

ANC algorithm produced more accurate SpO2 measurements than the non-adaptive 

algorithm (M = 0) (Fig. 8.14). Likewise, in the example shown in Fig. 9.21, the 

adaptively filtered PPG signals provided SpO2 measurements that were closer to the 

reference values during jogging. Generally, the SpO2 Differential Threshold algorithm 

provided SpO2 measurements that were less accurate than the algorithm designed by 

Johnston [12]. Therefore, the SpO2 algorithm designed by Johnston [12] was 
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implemented in this thesis and should be utilized for the calculation of SpO2 readings. 

PPG signals acquired during jogging (Fig. 9.22) suggested that SpO2 accuracy may 

be significantly affected by changes in the DC components of PPG signals. Although this 

result was not observed in the literature, it was found to occur during a limited number of 

experiments. This result suggests that potentially more accurate SpO2 measurements 

could be obtained if the effects of motion artifacts on the DC components of PPG signals 

can be minimized. 

 

10.4.2. HR AVERAGING 

The Peak Count-Based Averaging algorithm [12] provided inaccurate HR readings 

during rest, as shown in Fig. 9.6B. These inaccuracies were a consequence of varying the 

response times of the Peak Count-Based Averaging routine (Table 9.1). The Time-Based 

Averaging algorithm shown in Section 9.1.2 provided HR readings with a constant time 

response which was therefore independent of HR readings. The data in Table 9.2 showed 

that the improvement in the RMSE of the measured HR was considered significant using 

the LMS algorithm (p < 0.0001) but was not considered significant using the RLS 

algorithm (p = 0.115). This modification was particularly important for comparison 

purposes since averaging in commercial pulse oximeters typically consists of averaging 

readings within fixed time length windows (typically 2s to 16s) [22, 28]. 

 

10.4.3. EXTRACTION OF HR FROM R AND IR SIGNALS 
IHR values extracted from R signals were utilized to improve the accuracy of HR 

measurements during jogging. Results shown in Section 9.3.3 indicated that by 

employing the modified HR extraction scheme, 10.75% and 34.14% mean improvement 
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in HR measurement were obtained from the LMS and RLS algorithms, respectively. 

These mean differences were significant at the p = 0.05 level (Table 9.3). 

 

10.4.4. IHR THRESHOLD 

The IHR threshold routine was used to reject IHR values that varied significantly 

from the average HR readings. Data in Section 9.3.4 confirmed that by using the IHR 

Threshold algorithm, 20.52% and 63.17% mean improvement in HR measurement can be 

obtained from the LMS and RLS algorithms, respectively. These mean differences were 

significant at the p = 0.05 level (Table 94). 

As described in Section 9.3.4 and 10.1.2, IHR values were rejected from the average 

HR reading by employing a threshold range of 50% and 175% difference between the R 

and IR derived IHR values. The results showed that this threshold range was appropriate 

for adaptively filtered PPG signals since multiple peak detection and missed peaks also 

occurred in these signals (Fig. 9.23, 9.24, 9.25). 

The results indicated that the HR extraction algorithms significantly improved 

measurement accuracy extracted from adaptively filtered PPG signals, as shown in Fig. 

9.26. The results associated with these modifications were significant since a limited 

amount of research exists regarding the feasibility of obtaining more accurate 

measurements from a wearable pulse oximeter during episodes of motion artifacts. Some 

researchers suggested that an ACC-based ANC algorithm could improve HR accuracy 

[49, 59], although details regarding the method of HR extraction were not reported. The 

results in this thesis indicated that ACC-based ANC, in conjunction with modified 

measurement extraction algorithms, were effective in obtaining more accurate 

measurements during jogging. 
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It should be noted also that inaccurate HR readings were obtained by processing 

adaptively filtered PPG signals in the Signal Derivative algorithm devised by Johnston 

[12], as shown in Fig. 9.26. This indicates that the algorithm modifications helped to 

remove erroneous HR calculations from the final HR reading. In contrast, the algorithm 

developed by Johnston did not incorporate clever routines to reject inaccurate 

measurements. 

In addition, Fig. 9.26 indicated that the HR readings obtained from the Masimo 

reference pulse oximeter were unresponsive to the changes in HR. We noticed that 

inaccurate Masimo readings were obtained during several jogging trials despite keeping 

the finger-worn sensor relatively still during jogging. This suggests that the software 

incorporated into the Masimo pulse oximeter detected corrupted PPG signals, therefore, 

limiting the usefulness for field applications. 

 

Jogging Activity 

Jogging was the primary type of activity studied in this thesis since this activity induced 

intense motions which would be typical during some field applications. Other body 

movements pertinent to soldiers and first responders that can occur in the field (i.e. 

crawling, jumping, climbing, etc.) were not studied. The results from these limited studies 

indicated that the ACC-based ANC algorithms can provide substantial improvements in 

SpO2 and HR accuracies. Despite these improvements, the readings may not be 

sufficiently reliable for diagnosis purposes during jogging. With this in mind, it should be 

noted that the primary aim of this work was not to develop a wearable pulse oximeter for 

jogging, but rather to study the effects of motion artifacts associated with jogging 

activity. Therefore, improvements in SpO2 and HR measurement accuracy, as shown in 
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Fig. 9.17, suggest that ACC-based ANC could provide more accurate readings during 

other activities typical in the field. However, future studies should be performed to assess 

the potential for obtaining more accurate readings during other types of activities. 

Additionally, a sustained activity was studied in order to characterize the ACC-based 

ANC algorithms. Since an adaptation process was an inherent component to this 

algorithm, sustained activity was studied to simplify the analysis of the ANC systems. 

Practically, since movements in the field can change continually, additional studies 

should be conducted to evaluate ACC-based ANC algorithms for these types of changing 

activities. 

From a clinical standpoint, the ACC-based ANC algorithm and the modified software 

provided more accurate readings during jogging. Despite this improvement, it might not 

be feasible to measure precisely the SpO2 and HR of a jogger due to the high degree of 

movement artifacts. Generally, by obtaining certain body orientation and activity 

information (i.e. standing and performing high activity), a medic would be able to infer 

that the soldier was not injured. Similarly, a medic could rely on body acceleration 

information as an indication that if an individual remains motionless and is lying on the 

ground, there is a greater probability that the person may be wounded. 

 

10.5. ACCELEROMETER AXES SELECTION 

 

To determine how each axis may help to improve measurement accuracy, a triaxial 

ACC was integrated within the forehead-mounted SM. The results indicated that the 

vertical acceleration signal was the most dominant plane of acceleration during jogging 

(Fig. 9.13C). This suggests that the frequency associated with the vertical displacement 
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of the SM during jogging contribute significantly to the spectral content of the motion-

corrupted PPG signal. 

The results described in section 9.4 showed that the X-axis reference signal provided 

significant improvement in SpO2 and HR measurements during jogging. It was also 

shown that the combined X+Y+Z signal provided comparable results (Table 9.5). Despite 

the similarity between the results obtained by the X vs. X+Y+Z signals, the 

implementation of a triaxial ACC would be more advantageous than a single axis ACC. 

For example, during sensor misalignment, a single vertical-axis ACC could become 

misaligned, thus providing an ineffective noise reference signal. Hence, an X+Y+Z signal 

would be a more effective noise reference. 

A practical advantage of a triaxial ACC is that accurate body activity and posture 

information can be extracted [52]. In addition, utilizing the tilt-sensing component can 

indicate posture more accurately. For example, Bouten et al have shown that signals from 

a triaxial ACC could be processed in software to assess the level of activity and posture 

[52]. In contrast, since a single-axis ACC represents only 1 physical plane of movement, 

only limited information would be acquired. 

For instance, a triaxial ACC would be especially useful during combat since ACC 

signals could indicate that a soldier is lying down and remains inactive. Thus, a medic 

would consider the SpO2 and HR readings acquired during rest to be reliable and 

therefore assess the health status with greater confidence. 

Additionally, Table 10.2 shows that the power consumed by obtaining a single axis of 

body acceleration is comparable to obtaining three axes of acceleration. The effective 

duty cycle was calculated as the portion of time during which the ACC draws current 
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(0.5mA average current draw). Since the ACC signals were sampled at 80Hz, a 12.5ms 

sampling period was used for calculations. For instance, sampling a single axis ACC 

would require 1ms for ACC turn-on time and 0.2ms for sampling by the µC for an 

effective duty cycle of 9.6% (i.e. 1.2ms/12.5ms). The duty cycles associated with a 2-axis 

and 3-axis ACC were calculated by allowing 0.2ms of sampling time for each additional 

axis. 

Compared to sampling a single-axis ACC, these data show that usage time is 

decreased by 14.3% and 31.8% by sampling a dual-axis and tri-axis ACC, respectively. 

Although a reduction in usage time could limit the effectiveness of a battery-powered 

device, results indicated that a triaxial ACC provided an effective noise reference to an 

ANC filter. In addition, it was suggested in the literature [52] that triaxial ACC signals 

can indicate accurately body activity and orientation. Therefore, despite a slight decrease 

in usage time, it would be advantageous to utilize a triaxial ACC for remote physiological 

monitoring. 

Table 10.2. Power consumption of the ACC. 

 

ACC Average 

Current (mA) 

Effective 

Duty Cycle 

Battery 

Capacity (mAh) Usage Time (h) 

1-axis ACC 0.5 0.096 220 4583 

2-axis ACC 0.5 0.112 220 3928 (-14.3%) 

3-axis ACC 0.5 0.128 200 3125 (-31.8%) 

 

10.6. TIME DIFFERENCES IN BODY ACCELERATION AND PPG SIGNALS 

 

It was suggested in the literature that significant time delays exist between ACC and 

PPG signals acquired during jogging [59]. Fig. 10.2 shows the cross-correlation between 

ACC and motion-corrupted PPG signals found by Asada and co-workers [59].  The 
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results in Section 9.5 showed that body acceleration and PPG signals acquired from the 

custom pulse oximeter produced a higher cross-correlation value for various time delays 

which was similar to the findings of Asada et al [59]. It was expected that more accurate 

measurements would be obtained by implementing a fixed delay between the ACC and 

PPG signals. Despite this expectation, it was found that a time delay did not significantly 

affect SpO2 and HR accuracies (Fig. 9.28). Therefore, it was determined that the ACC-

based ANC algorithm does not require the implementation of a fixed time delay. 

As described previously, a constant delay was implemented in this thesis to simplify 

the software associated with the ACC-based ANC algorithm. In general, a variable time 

delay would have complicated the methodology and ultimately the real-time software 

implementation associated with the pulse oximeter. Since the results did not provide 

compelling evidence that a time delay significantly affects measurement accuracy, there 

is no reason to implement a time delay between the ACC and PPG signals. 
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Figure 10.2. Cross-correlation between body acceleration and PPG signals as a function 

of time delay [42]. 

 

10.7. SPECTRAL OVERLAP 

 

It was suggested in the literature that spectral overlap between ACC and motion 

corrupted PPG signals could reduce the effectiveness of the ACC-based ANC algorithm 

[60]. Consequently, it was expected that the ANC algorithm would attenuate the cardiac 

spectrum during cases of spectral overlap since the ANC algorithm is essentially a 

tunable band-reject filter. To test this assertion, ACC and PPG signals consisting of 

spectral overlap were simulated in Matlab (Section 9.6.1). The results showed that the 

spectral band of the PPG signal was attenuated by about 50% when the spectral band of 

the ACC signal was within 0.1Hz (Fig. 9.30). 

To determine the potential effects of spectral overlap during jogging, experiments 

consisting of spectral overlap were analyzed. It was found that spectral overlap did not 
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have a significant effect on the accuracy of SpO2 and HR readings during jogging (Fig. 

9.32). This supports our Matlab simulations since it was found that the frequency of the 

desired signal was not attenuated to a significant degree during experimental trials. 

Practically, PPG signals consist of continually changing frequency components 

associated with activity, as well as variations in the cardiac and respiration rates. This 

suggests that there is a low probability that cardiac and body acceleration signals would 

overlap entirely during jogging. Therefore, we believe that the ACC-based ANC 

algorithm would be effective in improving SpO2 and HR accuracy during jogging.  

 

10.8. REAL-TIME ANC 

 

Since this thesis focused on real-time physiological monitoring, we have investigated 

the feasibility of implementing an ACC-based ANC algorithm within an embedded µC. 

Each algorithm was investigated for operation in the embedded TI-MSP430 µC. It was 

found that the LMS and RLS algorithms provided similar improvements in SpO2 and HR 

accuracy. Table 10.3 shows the execution time required for the µC to process one sample 

of the ACC and PPG signals by the LMS and RLS algorithms. The projected execution 

times for the RLS filter (M = 16, 32, 64) were calculated by extrapolating a 2
nd

 order 

curve fitted to the data obtained from implementing the algorithm in the embedded TI-

MSP430 µC (M = 2, 4, 8). 
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Table 10.3: LMS and RLS execution times measured from the embedded TI-MSP430 µC. 

 LMS Execution Time (ms) 

Filter Order (M) 80kHz CLK 1MHz CLK 8MHz CLK 

2 9.6 1 0.2 

4 16 1.8 0.3 

8 29 3.2 0.6 

16 56 6.2 1.1 

32 108 12.2 2 

64 208 24 4 

 

 RLS Execution Time (ms) 

Filter Order (M) 80kHz CLK 1MHz CLK 8MHz CLK 

2 26 6.5 1 

4 150 18.5 2.8 

8
*
 510 63 9.4 

16
‡
 2.6E04 1.3E03 182 

32
‡
 4.6E07 4.6E05 6.1E04 

64
‡
 1.5E14 6.0E10 6.9E09 

* 
Due to limitations in system hardware, an 8

th
 order RLS filter was the highest order than could be 

implemented in the embedded TI-MSP430 µC. 
‡ 

These values represent projected execution times based on 

the data measured for 2 < M < 8. 

 

Since the communication protocol of the custom pulse oximeter consists of 

processing 40 R and IR data samples, the projected execution times for processing 80 

samples are shown in Table 10.4. These projected values suggest that the processing 

requirements of the LMS and RLS algorithms could potentially be a limiting factor in the 

implementation of the ACC-based ANC algorithm if the TI-MSP430 µC is utilized. 

Since the SM and RM transmission cycle consists of 3 transmission bursts once every 

500ms, the remaining time (37/40 bursts) can be used for processing. This represents 

92.5% of 500ms or 460ms of the processing time in the RM [61]. Since peripheral 

functions and calculation of measurements requires 150ms, a total of 310ms would be 
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available for processing associated with the ANC algorithm (these times are bolded in 

Table 10.4). Due to the substantial amount of processing associated with the RLS 

adaptive algorithm, it was found that implementation of the algorithm within the 

embedded µC requires considerable execution time. Therefore, it would be more feasible 

to implement an LMS type adaptive algorithm. 

The effect of clock speed on the power consumption of the µC could limit the order 

of the filter implemented within the µC. Reduction of measurement error obtained by the 

ANC filter increases as a function of the filter order (M). Since processing time, and 

therefore power consumption, increases with filter order, the filter order parameter should 

be minimized. Note that, as shown in Fig. 9.17, the rate of RMSE reduction decreases as 

M approaches 24. Therefore, an evaluation of measurement accuracy and power 

consumption associated with filter order could potentially determine an optimal clock 

speed and filter order. 

Next, we considered the RAM requirements of the ANC algorithm in order to 

determine the feasibility of implementing the algorithm within the embedded TI-MSP430 

µC. Table 10.5 summarizes the estimated RAM (Kb) required, confirming that the LMS 

filter would not be limited by RAM usage. 
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Table 10.4: Projected LMS and RLS execution times for 80 data samples using the 

embedded TI-MSP430 µC. The bold numbers represent feasible filter order (M) and µC 

clock configurations. 

 LMS Execution Time (ms) 

Filter Order (M) 80kHz CLK 1MHz CLK 8MHz CLK 

2 768 80 16 

4 1280 144 24 

8 2230 256 48 

16 4480 496 88 

32 8640 976 160 

64 16640 1920 320 

 

 RLS Execution Time (ms) 

Filter Order (M) 80kHz CLK 1MHz CLK 8MHz CLK 

2 2080 520 80 

4 12000 1480 224 

8
*
 40800 5040 752 

16
‡
 - - - 

32
‡
 - - - 

64
‡
 - - - 

* 
Due to limitations in system hardware, an 8

th
 order RLS filter was the highest order than could be 

implemented in the embedded TI-MSP430 µC. 
‡ 

These values exceed feasible time requirements for the 

present system configuration. 

 

 

Table 10.5: Estimated RAM usage for the LMS adaptive filter using the embedded TI-

MSP430 µC. Measurements were obtained using a constant clock speed of 1MHz.  

Filter Order (M) RAM (Kb) 

2 1.07 

4 1.11 

8 1.17 

16 1.30 

24 1.43 

32 1.55 

64 2.07 
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11. CONCLUSIONS 

 

Advances in remote physiological monitoring could provide a valuable means for 

medical personnel and first responders to assess remotely the health status of soldiers, 

hazmat workers, firefighters, and other individuals operating in dangerous and high-risk 

environments. A wearable pulse oximeter that provides arterial oxygen saturation (SpO2), 

heart rate (HR), heart rate variability (HRV), and respiration rate (RR) readings could be 

utilized in the field since these readings help to indicate cardiovascular changes, changes 

physical and mental stresses, changes in autonomic nervous system, and breathing rate, 

respectively. Unfortunately, commercially available pulse oximeters are limited in terms 

of measurement reliability during motion. Therefore, the objective of this thesis was to 

investigate the feasibility of implementing software algorithms to improve measurement 

accuracy in a custom wearable pulse oximeter. In addition, it was determined whether the 

TI-MSP430 embedded microcontroller (µC) could support accelerometer (ACC)-based 

adaptive noise cancellation (ANC). 

ACC-based ANC algorithms were studied as a potential means to minimize the 

effects of motion artifacts in photoplethysmographic (PPG) signals obtained from a 

forehead-mounted pulse oximeter sensor. A triaxial ACC was integrated into the sensor 

module (SM) of the wearable pulse oximeter. In vivo experiments were conducted to 

assess the effectiveness of the algorithm during treadmill, indoor and outdoor jogging. 

Data were processed offline in Matlab to calculate the root mean squared error (RMSE) 

extracted from PPG signals using Least-Mean-Square (LMS) and Recursive Least- 

Squares (RLS) ANC algorithms. 

Design parameters of the LMS and RLS algorithms were varied in order to determine 
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their potential effects on measurement accuracy. Since a suitable range of values was 

established for the step-size (µ), forgetting factor (λ), and filter order (M) parameters for 

all data, the results suggest that it would be feasible to extract more accurate readings 

using the ANC algorithms during intense motions such as jogging. Similarly, despite 

differences in jogging between individuals, we found that the summation of body 

acceleration signals (X+Y+Z) was effective in attenuating the spectral content due to 

motion from the PPG signals during all jogging trials. Utilizing the appropriate adaptive 

filter design parameters as well as the combined X+Y+Z noise reference input signal, it 

was found that the LMS and RLS adaptive noise cancellation algorithms produced 

similar improvements in SpO2 and HR accuracy during jogging. Based on these findings, 

it was concluded that accelerometry-based ANC software was effective to reduce motion 

artifacts in a forehead-mounted pulse oximeter sensor during jogging. 

 

Potential Causes of Motion Artifacts 

The results of this thesis confirmed that jogging activity directly contributes to the effects 

of motion artifacts in PPG signals. Although changes between the optical coupling of the 

sensor and the skin may be a potential factor contributing to motion artifacts, the degree 

to which this appears during jogging remains unclear. Although the studies performed 

were limited to forehead-worn PPG sensors, it was shown that the ACC noise reference 

signals provided an accurate estimation of the motion frequency during jogging. This 

suggests that the physical movement of the sensor, rather than change in blood volume 

within the vascular tissues, contributed to the effects of motion artifacts.  
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Accuracy of Arterial Oxygen Saturation during Jogging 

As shown in Fig. 9.17, RMSE obtained for SpO2 measurements averaged over all jogging 

trials was 5.1 ± 5.0% and 5.0 ± 4.6% for 24
th
 order LMS and RLS adaptive filters, 

respectively. As compared to RMSE values obtained without ANC, this corresponds to a 

reduction in RMSE of 22% and 23% using the LMS and RLS algorithms, respectively. 

Although the frequency of motion was effectively removed from the PPG signals (Fig. 

9.13), the RMSE obtained for SpO2 measurements was still relatively high. This suggests 

that SpO2 readings may be unreliable during jogging. Additional studies should be 

performed to assess the feasibility of extracting accurate SpO2 readings during other 

types of motion that occur in the field. 

 

Accuracy of Heart Rate Readings during Jogging 

Although improvements were shown for both SpO2 and HR accuracies, the results 

regarding HR measurements were more promising. For instance, significantly more 

accurate HR measurements were obtained during jogging from PPG signals extracted 

using ACC-based ANC algorithms. As shown in Fig. 9.17, RMSE obtained for HR 

measurements averaged over all jogging trials was 5.8 ± 3.7% and 9.0 ± 6.3% for 24
th
 

order LMS and RLS adaptive filters, respectively. As compared to RMSE values without 

ANC, this corresponds to a reduction in HR RMSE by 59% and 36% using LMS and 

RLS algorithms, respectively. This suggests that medical personnel could potentially 

utilize HR readings obtained from the wearable pulse oximeter even during movements 

typically encountered in the field.  

 

Adaptive Noise Cancellation during Jogging 

The experiments performed for this thesis showed that ACC-based ANC can reduce the 
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effects of motion artifacts in PPG signals obtained from a custom forehead-worn pulse 

oximeter sensor during jogging. Despite these promising results, note that the 

effectiveness of the ACC-based ANC algorithm may be limited during certain activities. 

In particular, since the ANC algorithm adaptively tunes to the noise reference signal, 

reduction of noise could be limited during motions that are less repetitive compared to 

jogging. Specifically, movements which produce motion artifacts with frequency content 

that varies over a wide spectral band could limit the degree to which motion artifacts are 

removed depending on the adaptation rate of the algorithm. For example, movements 

whose spectral band rapidly shifts in frequency could reduce the effectiveness of an ANC 

algorithm with slow adaptation characteristics. 

 

Body Activity during Injury 

It is assumed that an individual would be less active during a serious injury, allowing a 

medic to obtain accurate diagnoses since the effects of motion artifacts would be 

diminished considerably. By integrating an ACC into the sensor, the custom wearable 

pulse oximeter, which supplies a medic with physiological readings, can also provide an 

indication of body activity. The level of body activity provides a medic with additional 

information regarding the health status of an individual and can be utilized to indicate the 

degree of measurement accuracy. For example, a medic would have greater confidence in 

the accuracy of readings when a soldier is motionless or has a low level of body activity. 

This is significant since low body activity could occur during an injury. In contrast, 

although measurement accuracy would diminish during higher levels of activity, a medic 

could consider a highly active subject to be less critically injured. 
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Memory and Processing Requirements Associated with ANC  

To evaluate the effectiveness of ANC algorithms for real-time applications, custom LMS 

and RLS algorithms were implemented in the embedded TI-MSP430 µC of the receiver 

module (RM). Due to relatively low processing requirements of the LMS adaptive 

algorithm, it was determined that this algorithm would be more suitable than the RLS 

algorithm. In particular, the execution times associated with the LMS algorithm indicated 

that it would be more suitable for real-time applications within a battery-powered µC. 

In order to implement the ACC-based ANC algorithm, the embedded µC must meet 

several stringent design requirements. A 24
th
-order LMS algorithm would require 1426 

bytes of RAM since the algorithm utilizes several 24-length vectors for storing the filter 

output, error signals and tap weight vectors associated with the algorithm (i.e. for an LMS 

filter of order M, several vectors are required: yRED[M], yIR[M], eRED[M], eIR[M], 

wRED[M], and wIR[M]). Note that memory requirement includes random access memory 

(RAM) to store the necessary body acceleration signals used as noise reference inputs. 

This RAM requirement would not limit the feasibility of implementing this algorithm 

since 10KB of RAM is available in the TI-MSP430F1611 µC. 

Another design consideration includes program memory requirements. The total 

program memory available in the TI-MSP430F1611 would also be sufficient for 

implementing ACC-based ANC software routines since the program memory utilized by 

the adaptive algorithms is 1.2KB and about 2.2 KB for LMS and RLS algorithms, 

respectively. The program memory required for the SpO2 and HR measurement 

algorithms and other support functions is about 8.4KB. Since the TI-MSP430F1611 µC 

provides 48KB of program memory, no additional memory will be required. 
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12. FUTURE RECOMMENDATIONS 

 

Evaluation of ACC-Based ANC for Real-Time Conditions 

The studies conducted for this thesis consisted of treadmill, indoor and outdoor jogging 

experiments. Future studies should incorporate experiments with additional activities in 

order to determine more fully the effectiveness of the ACC-based ANC algorithms. Since 

the focus of this work is on physiological monitoring and triage of military combatants, 

firefighters, mountain climbers and other persons operating in dangerous environments, 

movements typical to these scenarios should be studied. 

Since jogging represents one type of movement, studies should be performed to 

determine the feasibility of improving measurement accuracy during simulated 

conditions or training missions. Simulations of battlefield scenarios could consist of a 

combination of resting, jogging and other activities. Also, since we studied the effects of 

motion during 1-minute jogging trials, it would be useful to determine the feasibility of 

improving measurement accuracy during longer jogging periods as well as intermittent 

periods of rest and jogging. 

Additional applications that could benefit from motion-resistant pulse oximetry 

include monitoring firefighters during action and triage of individuals from buildings, 

athletes during physical training, and injured individuals during patient transport in both 

the military and clinical settings. In order to address the feasibility of implementing a 

wearable pulse oximeter for these scenarios, additional studies should be conducted to 

simulate movements typical during these types of events. 

 

Evaluation of ANC Algorithms in an Embedded Microcontroller 

Results presented in this thesis demonstrated that ACC-based ANC algorithms reduced 



www.manaraa.com

 126 

the RMSE of SpO2 and HR measured during jogging. It was also demonstrated that the 

LMS algorithm consists of fewer computations than the RLS algorithm. This has 

important implications for real-time wearable physiological monitoring which requires 

optimal processing of software algorithms. Other adaptive filter algorithms that could be 

considered for ACC-based ANC include the varying step-size LMS (VSLMS), 

normalized LMS (NLMS), the block NLMS and the fast block NLMS [55]. Although 

these algorithms could provide potential advantages, such as shorter convergence time 

and lower RMSE, these algorithms may also increase the execution time. Therefore, to 

assess measurement accuracy, these algorithms should be evaluated offline in Matlab 

since this software environment would provide greater algorithm design flexibility and 

greater ease of implementation than an embedded µC environment. Additionally, the 

RAM and execution times associated with these algorithms should be measured by 

implementing these functions in C within an embedded µC environment. 

 

ANC Filter Weight Updating 

The ANC filters implemented in this thesis incorporated a filter weight updating scheme 

that recalculated filter weights during each iteration (i.e. 80 updates per second). 

Implementing this scheme can be advantageous since the filter coefficients adapt 

continuously to the input noise. A disadvantage of this scheme is that it requires the µC to 

perform continually calculations associated with the iterations of the ANC filtering 

process. 

A reduction in processing performed by the µC would increase the battery life of the 

wearable device, so alternative updating algorithms should be investigated. ANC systems 

found in the literature suggest that filter weight updating schemes could be modified to 
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perform filter weight adjustment less frequently [62]. This would be useful for real-time 

applications since fewer computations could provide a reduction of the power cost of the 

software algorithms. One modification to the filter weight updating scheme could consist 

of implementing a software routine to reduce the recalculation of the filter weights based 

on the ACC and PPG data. During a constant activity, the filter weights would remain 

relatively constant between iterations. Constant activity could be detected in software by 

processing the ACC signals. For instance, if the amplitude of the ACC signals is within a 

certain range in a given period of time, the ANC filter could utilize an algorithm with 

fewer filter weight updates. Such a software routine would update filter weights less 

frequently when software algorithms detect a sustained activity. Therefore, the power 

consumed could be preserved by eliminating unnecessary repeated recalculation of filter 

weights. 

 

Guarding Against Spectral Overlap 

It was shown that the SpO2 and HR readings were not affected significantly during 

experimental trials that consisted of spectral overlap (Fig. 9.32). It was reasoned that 

during these trials the cardiac spectral bands of the PPG signals were not attenuated since 

the ACC and PPG frequencies changed continuously over time. Additionally, results 

from simulations suggest that the ANC algorithm would not attenuate the cardiac 

frequency unless the frequencies of the ACC and PPG signals differed by 0.1Hz or less 

(Fig. 9.30). 

Although the data suggest that the occurrence of spectral overlap does not limit the 

effectiveness of the ANC software, these studies were limited to 7 individuals performing 

1-minute jogging. It is reasonable to consider that more significant spectral overlap could 
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occur during future studies. 

A technique known as Laguerre Expansion has been suggested as a potential method 

to correct for the spectral overlap between ACC and PPG signals [60]. However, similar 

results were obtained using standard RLS and the Laguerre RLS [60]. Therefore, since 

study of the Laguerre Expansion was limited [60], additional investigation should be 

conducted to verify the usefulness of this method. In addition, software routines should 

be designed and tested in order to determine the feasibility of detecting spectral overlap. 

For example, a potential method that could be tested would be to calculate the 

spectrum of the AC component of the ACC signals by a time domain algorithm (i.e. by 

making use of a peak-detection based routine). Software could compare the frequencies 

of ACC and adaptively filtered PPG signals and omit displaying the readings when 

significant spectral overlap is detected. 

 

Steady-State and Transient Studies of Arterial Oxygen Saturation during Rest 

An important part of the development of a wearable pulse oximeter is determining the 

measurement accuracy of SpO2 during rest. Studies conducted for this thesis were limited 

to three trials of transient conditions which consisted of one individual performing a 

hypoxic episode during rest and three trials that contained hyperventilation periods 

during rest. Future work should consist of conducting a more complete study during 

steady-state and transient resting conditions. 

In order to determine the accuracy of SpO2 readings during steady-state conditions, 

participants must inspire various gas mixtures composed of controlled amounts of oxygen 

[63]. A minimum of 20 trials should be conducted in order to test against the 0.05 

significance level. Participants would be fitted with the forehead-worn custom pulse 
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oximeter and the Masimo SET™ forehead-worn sensor as reference. Additionally, 

arterial blood samples should be analyzed by a reference co-oximeter in order to calibrate 

properly the software embedded within the custom pulse oximeter [63]. 

To study the effects of transient conditions on SpO2 readings acquired from the 

custom pulse oximeter, additional experiments should be performed consisting of 

hypoxic episodes while resting similar to the experiments performed in this thesis. Data 

collection should consist of two periods made up of 1 minute of rest and 30 seconds of 

hypoxia. This study would help to determine the differences in response times between 

the software associated with the Masimo SET™ and the custom pulse oximeter. 

Generally, this study would indicate the ability of the custom algorithms to track 

instantaneous changes in SpO2 readings. Preferably, this study should be done before 

determining the accuracy of SpO2 during motion. 

 

Improving SpO2 Measurement Accuracy during Jogging 

ANC algorithms were implemented to determine whether this software could reduce the 

effects of motion artifacts in the AC component of PPG signals. It was shown that the 

ANC algorithms were effective in attenuating the frequency attributed to motion (Fig. 

9.13) which enabled the calculation of more accurate SpO2 and HR readings during 

jogging (Fig. 9.17). As illustrated in Fig. 9.20, the DC component of the PPG signal was 

obtained by applying a LPF to the raw PPG data. Although the frequency of stepping 

motion was removed from the DC component of the PPG signals by the use of a LPF, 

low frequency changes due to motion remained in the DC signals. This suggests that 

additional signal processing algorithms could be designed to improve the reliability of 

SpO2 measurements during movements. 
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Changes in the DC value associated with motion could be detected and corrected for 

in software. For example, utilizing the DC values obtained before the onset of motion 

could provide improvements in SpO2 measurement accuracy during jogging. It is feasible 

that other signal processing methods could be designed and tested to improve the 

accuracy of SpO2 measurements during activity. Therefore, the data collected for this 

thesis should be analyzed further to determine the feasibility of reducing the effects of 

motion artifacts on the DC component of PPG signals acquired during activity. 

 

The Effects of Motion Artifacts on Heart Rate Variability and Respiration Rate 

It has been shown by Johnston that HRV [64] and RR [65] readings can be extracted 

from PPG signals acquired from the custom pulse oximeter during rest. HRV in particular 

may benefit a medic since HRV data can be utilized to predict changes in sympathetic 

nervous tone, which could enhance the diagnostic usage of the wearable pulse oximeter. 

Since it was shown that the ANC algorithm provided significant improvements in the 

accuracy of HR measurements, potentially more accurate HRV readings could be 

acquired during motions that typically occur in the field. Future studies should be 

conducted to extract HRV readings from the data collected for the experiments for this 

thesis. Reference HR readings acquired from the Polar ECG monitor could be utilized as 

a HRV reference source. 

Determining the feasibility of obtaining more accurate RR readings by implementing 

ANC algorithms is a potential area for future work. Studies performed by Johnston [12] 

indicated that software algorithms could provide RR readings with clinically acceptable 

accuracy during rest. Studies should be conducted to determine the accuracy of these 

algorithms during jogging. 
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